
Journal of Korea Multimedia Society Vol. 20, No. 5, May 2017(pp. 827-834)

https://doi.org/10.9717/kmms.2017.20.5.827

Crowdsourced Risk Minimization for
Inter -Application Access in Android

Youn Kyu Lee†, Tai Suk Kim††

ABSTRACT

Android’s inter-application access enriches its application ecosystem. However, it exposes security

vulnerabilities where end-user data can be exploited by attackers. While existing techniques have focused

on minimizing the risks of inter-application access, they either suffer from inaccurate risk detection or

are primarily available to expert users. This paper introduces a novel technique that automatically analyzes

potential risks between a set of applications, aids end-users to effectively assess the identified risks

by crowdsourcing assessments, and generates an access control policy which prevents unsafe inter-

application access at runtime. Our evaluation demonstrated that our technique identifies potential risks

between real-world applications with perfect accuracy, supports a scalable analysis on a large number

of applications, and successfully aids end-users’ risk assessments.
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1. INTRODUCTION
End-users store their private information in

their mobile devices. Although a large body of re-

search has focused on implementing various se-

curity measures to protect private information in

mobile devices, security risks still exist in Android’s

inter-application (inter-app) access [1], in which

components belonging to different apps communi-

cate via a particular type of message called intent.

Specifically, Android’s inter-app access is exposed

to inter-app attacks [2] that exploit intents to

eavesdrop private information or manipulate crit-

ical functionalities of victim apps.

Detecting a potential risk of inter-app attacks

is challenging because malicious apps disguise

their behavior as benign or stealthy. Furthermore,

especially for non-expert users, it is more chal-

lenging to correctly assess the riskiness of detected

vulnerabilities. Despite recent efforts, the existing

techniques for preventing inter-app attacks suffer

from inaccuracy in potential risks detection [3, 4]

or primarily target end-users who have expertise

in Android [4-8]. While crowdsourcing technique

has been proposed to aid non-expert end-users in

security configuration of mobile devices, it neither

targets inter-app attacks, nor it detects potential

risks between apps [9].

In this paper, we present a novel technique that

minimizes the risks of inter-app attacks between

target apps. It automatically identifies potential

risks between a given set of apps, aids end-users

to assess the identified risks by crowdsourcing

their assessments, and generates an access control

policy which prevents unsafe accesses at runtime.

Our technique is distinguished from prior works

because (1) it detects potential risks of inter-app

attack more accurately than existing techniques,
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// Victim Component

1 public class Victim1 extends Activity {

2  public void onStart() {

3   Intent i = getIntent();

4   String smsNum = i.getStringExtra("Num");

5   String smsText = i.getStringExtra("Text");

6   SmsManager Mngr = SmsManager.getDefault();

7   Mngr.sendTextMessage(Num, null, Text, null, null);}}

// Malicious Component

1 public class Malicious1 extends Activity {

2  public void onCreate(Bundle savedInstanceState ){

3   Intent i = new Intent();

4   i.setComponent(new 

ComponentName("VicApp1","VicApp1.Victim1"));

5   i.putExtra("Num", "000-000-0000");

6   i.putExtra("Text", "http://unsafe/spoofing“);

7   startActivity(i); }}

Fig. 1. An Example of Intent Spoofing.

Fig. 2. An Overview of Our Approach.

(2) it supports a scalable analysis of a number of

apps, (3) it enables non-expert users to effectively

assess potential risks by introducing crowdsourc-

ing approach, and (4) it integrates static detection

with runtime access control of inter-app access.

This paper makes the following contributions:

(1) we proposed a novel technique that enables

end-users to protect their devices from inter-app

attacks; (2) we developed a prototype tool that im-

plements the proposed technique; (3) we provided

the results of evaluations that involve real-world

Android apps, comparable techniques, and end-

users.

Section 2 illustrates inter-app attacks that moti-

vate our research. Section 3 details our approach

and Section 4 presents the three evaluations of our

technique. A discussion of related work is provided

in Section 5, and our conclusions are presented in

Section 6.

2. MOTIVATING EXAMPLES
Fig. 1 presents an example of inter-app attack,

intent spoofing, where a malicious component

(=Malicious1) exploits a critical function (i.e., send

TextMessage()) of victim component (=Victim1)

by sending an intent. While those components be-

long to different apps, in Android, a component can

initiate another component by sending an 1)explicit

intent. As depicted in Fig. 1, if Malicious1 sends

an explicit intent targeting Victim1 and containing

spoofed information (i.e., unsafe number and text),

sendTextMessage() in Victim1 will be sub-

sequently triggered and send a text message with

the spoofed information bundled in the incoming

intent. In this case, a potential risk of inter-app at-

tack exists between Malicious1 and Victim1.

Reversely, in the case of intent hijacking, if a

victim component was designed to send or broad-

cast an implicit intent that contains private in-

formation without any protection (e.g., permission

[7]), a malicious component can eavesdrop the in-

tent’s bundled information by declaring attributes

to receive the intent.

3. RISK MINIMIZATION OF INTER-APP 
ACCESS
As depicted in Fig. 2, our approach is divided

into five distinct phases. (1) Construct component

models: A set of apps is analyzed and each app’s

1) An explicit intent specifies target component, while an

implicit intent does not, but instead declares attributes,

such as action, category, and data type [12].
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Component{ componentname=String; risktype=String;  

*criticalmethod=String }

App{ packagename=String }

Intent{ action=String; category=String; data=Boolean; 

scheme=String; *targetcomponent=String }

IntentFilter{ action=String; category=String; 

data=Boolean; scheme=String } 

Permission{ hold=String; required=String }

Fig. 3. A Component Model.

information is transformed into component model;

(2) Identify potential risks: Potential risks between

the apps are detected from the component models;

(3) Assess identified risks: An end-user assesses

the safety level of each identified potential risk. (4)

Crowdsource risk assessments: Each end-user’s

assessment is crowdsourced and filtered based on

the similarity of safety levels. (5) Control in-

ter-app access: An access control policy is gen-

erated inorder to prevent unsafe runtime accesses.

In the remainder of this section, we will detail our

approach.

3.1 Construct Component Models

Identifying potential risks between apps requires

intra-/inter-component flow analysis. However,

for a large number of apps, traversing control-flow

graphs through every component is not scalable [5,

6]. To address this, we employ a component model

which summarizes the information of each com-

ponent. Our model enables a scalable risk analysis

by providing a macro perspective of a set of apps.

Constructing component models is processed as

follows. For a given set of apps, by parsing each

app’s manifest file and statically analyzing its

bytecode, five different types of information are

extracted: app name, component names, intents,

intent filter, and permission (intent and intent fil-

ter contain the information of attributes, i.e., target

component, action, categories, and data; permis-

sion includes the name of permission an app holds

or requires [7]). Meanwhile, each component’s

safety is examined by checking whether a compo-

nent contains a data-/control-flow between an

Intent method and a critical method. The critical

method refers to an Android system method which

can handle an end-user’s sensitive information or

trigger private operation such as getDeviceId()

and sendTextMessage() [8]. The Intent method

refers to an Android system method for sending

or receiving an intent (e.g., startActivity() and

onCreate()) [7]. If a flow directs through an Intent

method to a critical method, the risk type of com-

ponent is InComing. In the reverse case, the risk

type is OutGoing. The risk type presents whether

a component is vulnerable to an incoming intent

or its outgoing intent is unsafe. If no flow is found,

the risk type is set to null. Finally, the extracted

information is maintained per component as a com-

ponent model (see Fig. 3). Note that criticalmethod

exists only when the risktype is not null. and only

explicit intent contains the information of target-

component.

3.2 Identify Potential Risks

In this phase, potential risks between compo-

nents are identified by checking component models.

Unlike existing techniques [5, 6], checking compo-

nent models is scalable to a number of apps as

evaluated in Section 4. Our approach regards a risk

exists between two components in different apps

if one or both of them are unsafe components.

Specifically, every component whose risktype is

not null is examined based on two cases: (1) When

its risktype is “InComing,” every component be-

longing to different apps is inspected whether it

can access the component by sending an intent.

The corresponding components’ intent and in-

tentfilter are matched in order to check if an access

can be established. During the matching process,

comparing permission between those components

is also performed in case when the unsafe compo-

nent holds particular permissions to limit an

access. If a component can access to the unsafe
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component, the risk between those two compo-

nents is determined as “Intent Spoofing.” (2) When

its risktype is “OutGoing”, every component be-

longing to other apps is inspected to check whether

it can receive the intent sent from the component,

which may contain critical information. The in-

spection process is same as the first case (i.e.,

matching intent, intentfilter, and permission).

Once a component is found, the risk between them

is determined as “Intent Hijacking.”

3.3 Assess Identified Risks

Once potential risks are identified, an end-user

is required to assess the safety level of each risk.

The assessment uses a 5-point Likert scale (1 =

very safe, 2 = safe, 3 = neutral, 4 = unsafe, 5 =

very unsafe). Since a static analysis may cause

falsely identified results [4], an actual safety of

each risk needs to be confirmed by an end-user.

Furthermore, since the safety level between com-

ponents can be different depending on the user-

context, end-users’ assessments on the same pair

of components can be different. For example, if an

end-user has developed two different apps and two

components belonging to each of those apps which

can access each other, she may regard the access

as safe since she developed them herself. However,

in case when an end-user downloaded the same

apps from unreliable online sources, he may con-

sider the access between the same pairs of compo-

nents as unsafe.

3.4 Crowdsource Risk Assessments

In this phase, our technique leverages the

crowd-based exploration of the risk assessments

in order to recommend proper safety levels to an

end-user. For non-expert users who cannot de-

termine the safety levels, crowdsourced and refined

information can aid their assessments. We adapted

a user-based collaborative filtering [9] to identify

appropriate assessments based on the similarity of

safety levels between users. Specifically, for a user

(=a) and the other user in the crowd (=b ∈ Users),

the similarity of safety levels between a and b

(=s(a, b)) is computed using the cosine similarity

of their safety level vectors, (see formula (1)). For

each risk where the same pair of components is

involved, ra and rb indicate the safety levels of a

and b, respectively. For the remaining risks in

which different components are involved, their lev-

el vectors are allocated as 0. Once the similarity

is calculated, every user in the crowd is prioritized

based on the similarities. As a user sets a sim-

ilarity-level as k, k-nearest users’ safety levels are

recommended for each risk. The recommended safe

levels can help an end-user confirm her assess-

ment.

 





  



 
 



  



 



  



 
(1)

3.5 Control Inter-app Access

In the last phase, an access control policy is gen-

erated, which can control unsafe accesses at

runtime. An end-user can set access control op-

tions for safety levels. For example, an end-user

can set “always block” for an access whose safety

level is ≥4, while setting “always allow” for the

safety level ≤2. An access control policy contains

two different types of information: (1) identified

risks, each of which comprises the information of

a pair of components that may cause an inter-app

attack (e.g., componentname, packagename and

risktype); (2) safety levels and corresponding ac-

cess control options.

An access control policy is compatible with

Access Control Module (ACM), an additional

module which controls runtime access between

apps. Two different types of alternatives exist for

implementing ACM (i.e., instrumenting installed

apps’ bytecode and extending Android framework).

Whenever an access is requested, ACM checks
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Fig. 4. Precisions and Recalls of Risk Identification on 
Real-world Apps.

whether its risk is specified on the policy.

Specifically, when Comp1 of App1 tries to access

Comp2 of App2 by sending an intent, ACM pauses

the access and captures the information of Comp1

and Comp2. It then checks if the risk of corre-

sponding access is specified on the policy. If speci-

fied, ACM enforces Android’s access controller

(e.g., ActivityManager [7]) to handle it as the cor-

responding control option directs; otherwise, the

access is processed.

4. EVALUATION
4.1 Accuracy of Risk Identification

Experimental Setup: To evaluate our techni-

que’s accuracy in risk identification, we selected 19

real-world apps that are exposed to inter-app at-

tacks [3, 12-15]. Since some of those apps did not

have preexisting malicious apps that implement in-

ter-app attacks on them, we had to build some ma-

licious apps ourselves. We also included 12 trick

apps that contain vulnerable but unreachable com-

ponents, whose identification falls under a false

warning. In total, our test suite contained 25 poten-

tial risks (12 for intent spoofing and 13 for intent

hijacking) between 19 vulnerable apps and 25 mali-

cious apps that attack them. To confirm if an actual

risk exists in each pair of apps (i.e., a vulnerable

appand a malicious app), we manually inspected

their source code and observed runtime behaviors

via logcat [14], an Android debugging tool.

Results: We compared accuracy of our techni-

que in potential risk identification with other tech-

niques, IccTA [4] and DroidGuard [2], state-of-

the-art tools for inter-app risk detection. Specifi-

cally, we measured those technique’s precisions

(i.e., whether the identified risks were actually vul-

nerable to inter-app attacks) and recalls (i.e.,

whether all potential risks in our test suite were

identified).

As depicted in Fig. 4, only our technique illus-

trated perfect precision and recall in identifying po-

tential risks. Our technique correctly ignored all

trick cases as well. DroidGuard had 50% precision,

but its recall was only 20.84%. This is mainly be-

cause DroidGuard targets individual surfaces (e.g.,

interfaces) rather than specific risk information be-

tween components, which hampers finer-grained

characterization of risks, and returns risks only

when both sender and receiver contain critical

methods [8]. IccTA showed 25% precision and

recall. This is because IccTA primarily targets a

limited type of risk (i.e., intent hijacking). More-

over, since its app instrumentation does not sup-

port more than two apps simultaneously, it returns

either inaccurate risk information or execution

errors. Our evaluation has shown that, unlike other

techniques, our finer-grained model-based analy-

sis not only accurately detects potential risks, but

is also applicable to analyze a set of real-world

apps simultaneously.

4.2 Performance of Risk Identification

To prove our technique’s scalability, we meas-

ured performance of its risk identification. Specifi-

cally, we checked (1) whether it incrementally ana-

lyzes the increasing number of apps and (2)

whether it successfully analyzes a large number

of apps. We created four test bundles each of which

contains different number of apps (25, 50, 75, and

100). The apps were randomly selected from public

repositories [14-16]. Considering the fact that an
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Table 1. The Result of Risk Assessments

1 2 3 4 5 CR R

r1 0.00 6.67 0.00 10.00 83.33 4.70 5

r2 0.00 0.00 0.00 0.00 100.00 5.00 5

r3 10.00 0.00 6.67 6.67 76.67 4.40 4

r4 0.00 0.00 0.00 0.00 100.00 5.00 5

r5 0.00 0.00 6.67 0.00 93.33 4.87 5

r6 0.00 16.67 16.67 0.00 66.67 4.50 5

r7 0.00 0.00 3.33 33.33 63.33 4.17 4

r8 0.00 0.00 20.00 6.67 73.33 4.53 5

r9 0.00 0.00 23.33 6.67 70.00 4.47 4

r10 0.00 0.00 0.00 0.00 100.00 5.00 5

(1=very safe, 2=safe, 3=neutral, 4=unsafe, 5=very unsafe, CR=crowdsourced, R=rounded-off)

Fig. 5. The Number of Components and Analysis Time for 
Each Bundle.

average user uses 30 apps per month [15], the se-

lected numbers fairly reflect the real-world usages.

We ran our prototype tool on each bundle with a

PC (Intel core i7 2.3GHz CPU and 8GB of RAM).

The average analysis time (especially for two

phases: (1) construct component models and (2)

identify potential risks) took 69.05 seconds. Fig. 5

depicts the number of analyzed components in each

bundle (212, 597, 701, and 1,084) and the analysis

time for each bundle (18.32s, 39.71s, 102.9s, and

115.27s). The results show that our technique is

able to analyze a large number of apps in the order

of few minutes (i.e., 100 apps containing 1,084

components within two minutes) on an ordinary

PC and its analysis time is linearly scalable to the

number of apps, confirming that the proposed tech-

nique is feasible.

4.3 Effectiveness of Crowdsourcing 

We conducted a user study to evaluate (1) the

correctness of crowdsourced safety levels and (2)

the differences among individual, crowdsourced,

and revised assessments.

Experimental Setup: The user study included

30 non-expert participants, all of whom were grad-

uate students at the University of Southern Cali-

fornia and whose majors spanned business, com-

munication, social work, and science. The partic-

ipants have used Android devices for 28 months

on average and were aged between 18 and 34. 15

of the participants had experiences using Android

as their primary mobile platform; 15 had not used

Android previously. None of them had experience

in mobile software programming or analysis. We

provided each participant an Android device (i.e.,

Google Nexus 7) with 15 pre-installed apps that

were built by authors. The app types spanned vari-

ous categories (e.g., game, SMS, and GPS) and

were designed to launch actual inter-app attacks.

Among those 15 apps, ten different potential risks

existed, whose safety level should be considered

as ≥4. Firstly, the participants were asked to use

each app for five minutes. Then our prototype pre-

sented potential risks between those apps, and

asked the participants to assess their safety levels.

Once the initial assessments completed, our proto-
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type provided them with the crowdsourced safety

levels and let them revise their initial assessments

if they wanted.

Results: As for the crowdsourced safsety lev-

els, an average safety level for each risk (r1-r10)

was calculated and rounded off. As shown in Table

1, every crowdsourced safety level is correct (i.e.,

≥4). Table 1 also depicts the percentage of safety

levels for each risk. In total 11% (1% for very safe;

2.33% for safe; 7.67% for neutral) of risks were as-

sessed as 1-3 (from very safe to neutral), which

is considered as incorrect. However, after the

crowdsourced information was provided, 10% of

incorrect assessments were corrected to be unsafe

(≥4), which supports the conclusion that 10% of

potential risks could be minimized by providing

crowdsourced risk assessments.

5. RELATED WORK
A large volume of research has focused on de-

tection of security vulnerabilities in Android apps

[16]. ComDroid [1] statically analyzes an app to

identify inter-app vulnerabilities. IccTA [4] is a

static taint analyzer that identifies privacy leaks

among components. These techniques support only

a single app analysis or limited attack types.

App instrumentation and framework extension

are largely employed for runtime prevention of in-

ter-app risks. DroidForce [5] instruments target

app’s bytecode in order to enforce data-centric

policies. DroidGuard [2] synthesizes automati-

cally-generated security policies on the set of apps.

XmanDroid [3] enforces Android framework to

control inter-app access as a permission-based

policy specifies. While app instrumentation is rela-

tively easier to implement, modification of bytecode

may result in errors or additional attacks [17].

Meanwhile, Android framework extension pro-

vides a solid access control, which, however, re-

quires expertise in its adoption (e.g., re-installation

of Android framework on the device).

6. CONCLUSIONS
This paper proposed a new technique for mini-

mizing the risks of inter-app attacks by harmoniz-

ing a static analysis and crowdsourcing. Our tech-

nique’s model-based analysis accurately identifies

potential risks from a given set of apps and its

crowdsourced information, and effectively aids

end-users’ assessments on the identified risks. We

successfully evaluated our technique’s accuracy,

performance, and effectiveness. Our evaluation

demonstrated that our technique outperforms the

existing techniques in identifying potential risks

from a set of real-world apps, its analysis time is

linearly scalable to the number of apps, and it en-

ables an end-user’s precise risk assessments.

There are a number of research challenges re-

maining for future work. We can build a statistical

model based on the user profiles or each app’s pop-

ularity to provide more specific guidance to

end-users regarding risk assessments.
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