
Journal of Korea Multimedia Society Vol. 20, No. 5, May 2017(pp. 808-826)

https://doi.org/10.9717/kmms.2017.20.5.808

Design and Implementation of MEARN Stack-based
Real-time Digital Signage System

Trinh Duy Khue†, Thanh Binh Nguyen††, UkJIn Jang†,

Chanbin Kim†, Sun-Tae Chung†††

ABSTRACT

Most of conventional DSS’s(Digital Signage Systems) have been built based on LAMP framework.

Recent researches have shown that MEAN or MERN stack framework is simpler, more flexible, faster

and more suitable for web-based application than LAMP stack framework. In this paper, we propose

a design and implementation of MEARN (ME(A+R)N) stack-based real-time digital signage system,

MR-DSS, which supports handing real-time tasks like urgent/instant messaging, system status

monitoring and so on, efficiently in addition to conventional digital signage CMS service tasks. MR-

DSCMS, CMS of MR-DSS, is designed to provide most of its normal services by REST APIs and real-

time services like urgent/instant messaging by Socket.IO base under MEARN stack environment. In

addition to architecture description of components composing MR-DSS, design and implementation issues

are clarified in more detail. Through experimental testing, it is shown that 1) MR-DSS works functionally

well, 2) the networking load performance of MR-DSCMS’s REST APIs is better compared to a

well-known open source Xibo CMS, and 3) real-time messaging via Socket.IO works much faster than

REST APIs.

Key words: Digital Signage System, Content Management System, Real-time Web Service, MEAN

Stack, MERN Stack, REST API, Socket.IO

※ Corresponding Author : Sun-Tae Chung, Address:

(06978) Dept. of Smart Systems Software, Soongsil

Univ., 369, Sangdo-Ro, Dongjak-Gu, Seoul, Korea, TEL

: +82- 2-820-0638, FAX : +82-2-821-7653, E-mail :

cst@ssu.ac.kr

Receipt date : Feb 15, 2017, Approval date : April. 28, 2017

†††Dept. of Information and Telecommunication Engin-

eering, Soongsil University

(E-mail :{khue.trinh, doublestat, kesuskim}@ssu.ac.kr)
†††Embedded Vision, Inc, Seoul, Korea

(E-mail : binh.nguyen@ieev.org)
†††Dept. of Smart Systems Software, Soongsil Uniersity

(E-mail : cst@ssu.ac.kr)

1. INTRODUCTION
According to the proven effectiveness of digital

signboards for advertisement and public in-

formation, there has been a significant increase in

the demand for digital signage systems (DSS)

nowadays[1]. A digital signage system usually

consists of content management system(DSCMS)

and signage content players (responsible for dis-

playing signage contents onto display devices).

In addition to primary task of contents display

on schedule, DSCMS needs to support other tasks;

monitoring of signage players about their status

and what they are displaying, audience measure-

ment, disaster information distribution, instant

messaging, and so on [2]. Many tasks such as

monitoring and disaster information distribution

requires to be processed in real-time. The front-

end GUI to back-end DSCMS server, called dash-

board, provides administrative GUI for DSCMS

management and at-a-glance views of DSCMS

operational status such as registered users, current

log-on users, display device status, and so on.

Web-based dashboard is popular since it allows

access to DSCMS server from any place through

Internet.

809Design and Implementation of MEARN Stack-based Real-time Digital Signage System

Most of conventional DSCMS’s with web-based

dashboard have been developed based on LAMP/

WAMP platform (Linux/Windows, Apache Web

Server, MySQL, PHP) or variants [3,4], with

AJAX-based proprietary communication protocol

and/or SOAP-based web service.

In web-based applications, REST API [5] be-

comes a popular web service mechanism between

servers and clients since it has cleaner and easier

interface over non REST HTTP API and lighter

than SOAP-based web services. Under traditional

AJAX-based or SOAP-based networking envi-

ronments, it is well known that real-time network-

ing(messaging) is difficult to implement efficiently.

Recently, MEAN stack (a SW bundle of Mongo

DB, Express.js, AngularJS and Node.js)[6] or

MERN stack (a SW bundle of MongoDB, Express.js,

ReactJS and Node.js) [7] has been widely adopted

platform for developing web applications; MongoDB

[8], Express.js[9], and Node.js[10] for server side,

and AngularJS[11] or ReactJS[12] for client side.

MEAN or MERN stack-based web application de-

velopment increasingly gains popularity for several

advantages; fast performing and flexible web

server architecture (Node.js, Express.js), easy to

support real-time communication (asynchronous

event driven processing of Node.js, Socket.IO li-

brary [13]), flexible and easily scalable DB

(MongoDB), clean and maintainable front-end de-

sign (AngularJS, ReactJS), the same development

language, JavaScript and the same data format,

JSON [14] both on server side and client side, and

convenient development environments. JSON (Java

Script Object Notation) is the format for data-in-

terchange through all the layers. Even though

XML may have more representational power,

JSON has also good enough representation capa-

bility and can be parsed by a standard JavaScript

function. MongoDB stores data records as JSON

documents. Moreover, JSON also allows working

with external APIs easily. MongoDB is superior for

distributed databases and is highly scalable.

Under MEAN or MERN stack platform, REST

API is simple and easy to implement with JSON

as data format. Thus, REST API suits MEAN or

MERN stack environments well.

Developing a real-time applications with popular

web application stacks like LAMP (PHP) has tra-

ditionally been very hard. It involves polling the

server for changes, keeping track of timestamps,

and it’s a lot slower than it should be. Recently,

Socket.IO[13] has been the solution around which

most real-time communication systems under web

environments are architected, providing a bi-di-

rectional communication channel between a client

and a server. Whenever an event occurs, the idea

is that the server or clients will get it and push

it to concerned connected clients or the server. In

Node.js environments, Socket.IO is implemented as

Node.js module, and thus is well supported under

MEAN or MERN stack.

In this paper, we propose a web-based real-time

digital signage system, MR-DSS, based on MEARN

stack under cloud computing environments, with

a target for a signage service platform, not a sig-

nage solution. Here, MEARN stack implies that the

CMS server of the proposed MR-DSS, is con-

structed based on Node.js, Express.js and Mongo

DB. Dashboard of MR-DSCMS, and signage play-

er are built on AngularJS and ReactJS, respectively.

Dashboard needs to provide an administrative GUI

for user management, presentation management,

schedule management, asset management, device

(displayer) management, status of DSS, statistics

of audience response, and so on. All GUI views are

shown in comprehensively and systematically, and

Some GUI views are supposed to be shown differ-

ently depending on user level (privilege level), and

an user may sometimes choose to see some views

only in large-view mode. Therefore, more modular

and flexible design and architecture are desirable.

AngularJS is a front-end framework on which web

GUI design with more modular and flexible archi-

tecture can be built. ReactJS is not a framework

810 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

but a convenient, flexile, light library for support-

ing rendering front-end display quickly. For sig-

nage displayer, which does not need complicated

GUI, but needs a fast but flexible display, ReactJS

fits signage player display more efficient than

AngularJS since AngularJS is heavier and more

complicated.

MR-DSS not only supports normal main CMS

services via REST APIs, but also supports real-

time event processing task by utilizing Socket.IO.

The efficient implementation of REST APIs under

MEARN stack in MR-DSS is shown through

comparison experiments with Xibo DSS, which is

a popular open source DSS. Also, real-time service

implemented in MR-DSS based on Socket.IO is

shown to be faster compared non real-time service,

REST APIs.

Even though there appear many WCMS(CMS

for web site) based on Node.js [15,16], there are

a few WCMS based on MEAN/MERN full stack

[17]. To the best of our knowledge, no digital sig-

nage CMS based on MEARN stack with support

of real-time event processing has neither been re-

ported in the literature and has nor been commer-

cially released.

The rest of the paper is organized as follows.

Section 2 describes related work necessary for un-

derstanding the paper. Section 3 discusses our pro-

posed architecture. Section 4 shows the design of

issues and implementation. Some evaluation is

presented in Section 5. Finally, the conclusion is

given in Section 6.

2. TECHNICAL BACKGROUNDS AND RELATED
WORK

2.1 Technical Backgrounds; Node.js, MEAN/MERN
stack, REST API, and Socket.IO

A. Node.js [10]

Node.js is an open-source, cross-platform

JavaScript runtime environment for developing a

diverse variety of applications. Node.js has an

event-driven architecture capable of asynchronous

I/O, which makes Node.js excel at multi-user, re-

al-time web applications. The real-time power

comes through use of the WebSocket protocol sup-

ported by Socket.IO library. Research has shown

that a Node server significantly outperforms both

Apache and Nginx [18] for serving dynamic con-

tent—and Node’s implementation of JavaScript is

more than 2.5 times faster than the more traditional

PHP approach, by efficiently utilizing available

hardware.

Node.js is now a popularly adopted web applica-

tion framework and starts to be accepted as a good

platform for CMS [15,16,17] since it is a concurrent

JavaScript environment for building scalable and

fast web applications.

B. MEAN/MERN/MEARN Stack

MEAN stack [6] means a S/W bundle of

MongoDB, Express.js, and Node.js for server-side

and AngularJS for client-side, which is well-

known for building dynamic web sites and web

applications. MERN stack [7] is the same as MEAN

except that AngularJS is replaced by ReactJS.

MEARN stack in this paper means that both of

AngularJS and ReactJS are used for client-side

development in addition to MongoDB, Express.js,

and Node.js for server-side.

- Express.js[9] is built on the underlying capa-

bility of Node.js and provides a web application

server framework which supports handling rout-

ing and HTTP operations (such as GET and

POST) conveniently. Express.js facilitates a sim-

plified and more elegant solution than (re-)imple-

menting these services directly using Node.

- MongoDB[8] is well-known for a high per-

formance, well-scalable document-oriented NoSQL

database built around the JSON data format [14]

and as such is ideally suited to a server-side

JavaScript environments such as those provided

by Node.js.

- AngularJS[11] is a frontend JavaScript frame-

811Design and Implementation of MEARN Stack-based Real-time Digital Signage System

work to develop complex client side applications

with modular code and data binding UI. Angular

implements the MVC pattern to separate pre-

sentation, data, and logic components. Current

AngularJS version is Angular2, which has a new

architecture different from Angular1.

- ReactJS[12] is a declarative, efficient, and

flexible JavaScript library for building user inter-

faces. React creates an in-memory ‘virtual DOM’,

computes the resulting differences from real DOM,

and then updates the browser's displayed DOM

efficiently. Thus, ReactJS can support rendering

views quickly. As opposed to MVC pattern adopt-

ed in AngularJS, ReactJS utilizes flux pattern,

which is unidirectional so that it does not cause

confusing and it defines workflow clearly. Redux

is a very lightweight (2kB) implementation of flux.

ReactJS has smaller size and faster processing

speed than AngularJS since it is library and uses

virtual DOM.

C. REST API [5]

REST stands for Representational State Trans-

fer. REST API, widely known as RESTful API or

RESTful model for web-services, uses the native

HTTP operations: POST, GET, PUT & DELETE

to map on to the four fundamental CRUD oper-

ations (Create, Read, Update & Delete) on re-

sources, represented by a URL. The URL describes

the object to act upon and the server replies with

a result code and valid JavaScript Object Notation

(JSON). Because the server replies with JSON, it

makes the MEARN stack particularly well suited

for our application, as all the components are in

JavaScript and MongoDB interacts well with

JSON.

REST API is simple and easy to implement

compared to SOAP, which has been a facto stand-

ard for web services.

D. Socket.IO [13]

Socket.IO is a JavaScript library for real-time

web applications. It enables real-time, bi-direc-

tional communication between web clients and

servers. It has two parts: a client-side library that

runs in the browser or clients, and a server-side

library for Node.js. Both components have a nearly

identical API. Like Node.js, it is event-driven.

Socket.IO primarily uses the WebSocket protocol

with polling as a fallback option, while providing

the same interface.

E. SMIL Timesheets

Timesheets[19] defines declarative W3C stand-

ards based on SMIL Timing [20] and SMIL Time-

sheets[21] to synchronize HTML contents. SMIL

Timing defines elements and attributes to coor-

dinate and synchronize the presentation of media

over time.

Basically, SMIL Timing allows an a-temporal

language such as HTML5 to be extended with tim-

ing features. SMIL Timesheets reuses a significant

subset of SMIL Timing and allows timing and

synchronization to be separated from content and

presentation. This can be seen as the counterpart

of CSS style sheets in the timing domain: like in

CSS, these features are gathered either in an ex-

ternal resource linked to the document, or in a

timesheet element in the document itself. Like CSS

style sheets, timesheets can be associated not only

to HTML pages but also to other types of docu-

ments such as SVG drawings, for instance, or even

to compound documents made of HTML and SVG.

Based on the observations above, it appears that

combining HTML5+CSS3 and SMIL Timing

would bring a good solution to support temporal

synchronization as well as spatial synchronization

among assets in a presentation.

2.2 Related Works

Content management system (CMS) is a com-

puter application which provides an efficient con-

tent management tasks. The content management

tasks include storage, retrieval, creation, edition,

812 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

organization, distribution of contents [22], access

control to contents, other additional tasks depend-

ing upon usage purposes.

Digital Signage CMS(DSCMS) is different from

WCMS (Web CMS), which is responsible for con-

tent management in a web site. DSCMS supports

scheduling of content dissemination so that they

can be displayed at a desired time while WCMS

supports organization of contents in a web site in

a way that the contents are wanted to be shown

when people visit the web site. Most of signage

content management systems also support content

creation and edition by a subsidiary content design

module or program [15,16,17], as well as user man-

agement, device management, asset management,

and so on.

Dashboard of DSS, which is a front-end admin-

istrative GUI to back-end CMS server, provides

at-a-glance views of DSCMS operational status

such as registered users, current log-on users,

user privilege levels, display device status (con-

nected, disconnected, live, dead), contents display-

ing on display devices, network health reports,

screen GEO maps, communication between users,

audience measurement statistics as well as man-

agement GUI (user management, schedule man-

agement, and more). The dashboard is usually

constructed in web base so that it is displayed on

a web browser.

In order to support interoperability among digital

signage products and services from different man-

ufacturers, operators, and a wide variety of termi-

nals (display devices) with different character-

istics, several industry initiatives such as POPAI

[23], Intel[24], Digital Signage Federation[25], and

standardized organization such as ITU-T[26],

W3C Business Group [27,28], have been formulated

to define technical specifications for interoperable

digital signage solutions. However, those standard

efforts have not kept pace with flourishing deploy-

ment of commercial or open source digital signage

systems.

Many of conventional digital signage CMSs [3,4]

have been developed based on LAMP platform

(Linux, Apache Web Server, MySQL, PHP) or

variants; WAMP(Windows, Apache Web Server,

MySQL, PHP), LAPP(Linux, Apache, PostgreSQL,

PHP), MAMP (Mac OS X, Apache, MySQL, PHP),

XAMPP (Linux, Mac OS X, Windows, Apache,

MySQL, PHP, Perl). and many of them have uti-

lized their own contents description in XML or

JSON.

Nowadays, due to the efficiency and simplicity

of the MEAN/MERN full stack platform, it has

been popularly adopted for developing web-driven

applications including WCMS and digital signage

CMS [15,16,17].

In almost all digital signage systems, currently

content representation about spatial synchroniza-

tion among multimedia assets like text, image, and

video is usually described declaratively, either in

HTML, or in XML, or JSON. On the other hand,

content control including temporal synchronization

among assets can be achieved by either imperative

or declarative approach. The imperative approach

involves JavaScript codes which are programmed

about how to control contents and playout. In the

declarative approach, a mark-up or a format de-

scription annotates control of contents. Then, sig-

nage players parse the mark-up or format descrip-

tion and display contents.

The declarative approach is generic so that it is

useful for not only developers but also vendors of

authoring tools. If the annotation format is stand-

ardized, anyone could develop JavaScript libraries

for playing signage contents. This means that the

declarative approach could make signage oper-

ations more cost-effective. Furthermore, this could

achieve interoperability among terminals using or-

dinary web browser.

Many declarative approaches have been pro-

posed; HTML, SMIL[29], SCXML[30], Timesheets

[19]. Timesheets approach is based on SMIL

Timing [20] and SMIL TimeSheet[21]. SMIL Tim-

813Design and Implementation of MEARN Stack-based Real-time Digital Signage System

esheets is a style sheet language which is intended

for use as an external timing stylesheet for the

Synchronized Multimedia Integration Language,

and is meant to separate the timing and pre-

sentation from the content inside the markup of

another language (for instance, an SMIL Time-

sheet can be used to time an SMIL-enabled slide-

show).

We adopts Timesheets approach since we can

use HTML/CSS and JSON as they are and sup-

ports timing control by additional mark-ups or

JSON formats which can be interpreted by a

JavaScript library.

3. THE PROPOSED MEARN STACK-BASED
REAL-TIME DIGITAL SIGNAGE (MR-DSS)

3.1 Design Principles

The proposed digital signage system, MR-DSS

has the following requirements;

1) MR-DSS is structured as a web-based

application.

- Web-based digital signage system is built on

base of well-accepted web technologies; http,

JavaScript, JSON, and others.

- MEAN/MERN stack is a useful and con-

venient framework for constructing web-based

application. Thus, we construct the digital signage

system, MR-DSS, based on well-accepted web

technologies and MEARN stack.

2) MR-DSS supports non real-time information

processing through REST API

- Signage players or dashboard contacts MR-

DSCMS (CMS of MR-DSS) server to receive sig-

nage presentation information, and management

information, respectively. The request and re-

ception of these information do not have to be

processed in real-time, In this case, it is more ap-

propriate to support them by pull style non re-

al-time communication like HTTP. REST APIs

over HTTP are simpler than SOAP, and fits well

for MEAN/MERN stack-based web applications.

3) MR-DSS supports real-time information

processing from or to CMS server through

Socket.IO.

- Digital signage systems need to support dis-

tribution of urgent information like disaster mes-

sages and monitoring the status of signage players.

For these purpose, polling using HTTP isn't ap-

propriate because it needs a certain amount of time

to processing information over networking. Even

though web supports many mechanisms like

WebSocket, server-sent events, and push API, we

construct real-time processing based on Socket.IO,

a JavaScript library based on WebSocket.

4) Support the representation and control of sig-

nage contents through declarative approach

- As explained in Section 2.2, as for content con-

trol including temporal synchronization among as-

sets in a content frame can be achieved more ge-

nerically by declarative approach. The proposed

digital signage system, MR-DSS adopts time syn-

chronization description based on Timesheets ap-

proach [19]. Thus, our description about content

description consists of two parts; JSON descrip-

tion for spatial layout, and JSON format for tempo-

ral control description based on TimeSheets.

3.2 System Working Architecture

The proposed MEARN Stack-based real-time

digital signage system (MR-DSS) as the following

working architecture as shown in Fig. 1.

The proposed signage system, MR-DSS has

two main components: MEARN stack-based re-

al-time digital signage CMS (MR-DSCMS) lo-

cated on a cloud network and signage content

players (SCPs) at PC or embedded systems. MR-

DSCMS consists of front-end dashboard clients

and a main processing server (MR-DSCMS

Server) based on MEARN stack.

The dashboard clients provide administrative

814 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

Fig. 1. System Working Architecture.

web GUI to MR-DSCMS. Mobile dashboards on

Android or iOS are limited version of PC dashboard

and constructed based on native systems, not like

PC dashboard, which is built based on AngularJS

JavaScript framework. SCP renders signage con-

tents described in JSON format by utilizing React

JS.

MR-DSS supports two kinds of communication

mechanisms. For loosely coupling with RESTful-

ness and openness, non real-time communications

between MR-DSCMS server & SCP, and MR-

DSCMS server & dashboard are processed by

REST APIs. For real-time tasks such as real-time

monitoring of signage players’ status, distribution

of urgent messages, real-time processing of com-

mands, notification of new schedules and contents,

and sending of instant messages are processed in

real-time via Socket.IO protocol.

Signage content presentation, which means a

content frame to be displayed on SCP at a time,

is designed and formatted in JSON from the layout

editor in MR-DSCMS or manually. It can be also

designed in HTML format from HTML designer

like google web designer. It can be redesigned from

editing pre-existing content presentations. When

a new schedule for new contents is ready, then

MR-DSCMS server notifies the fact to related

SCPs via Socket.IO. Then, the SCPs contact MR-

DSCMS server and download the schedule/playlist

and the edited presentations from the MR-DSCMS

server via REST API and render them according

to schedule or playlist.

A signage content presentation has a spatial

layout and temporal control among constituents

(assets) in the layout. The layout consists of many

asset types such as a text, image, graphic, video,

or widget. A widget is a small JavaScript codes

with assets or links to assets, which can do some

useful tasks (like showing weather information).

Spatial layout and temporal control in rendering

presentation are described mainly in JSON format

and description by HTML5/CSS3 + TimeSheets

format is allowed in the sense that it can be in-

serted in JSON format files. A playlist is a list of

presentations to be displayed with durations on

SCP. A schedule (file) is a document which has

information for assigning start time and playing

duration, and display days in a week to each

presentation. Playlist and schedule are all described

in JSON format.

The proposed MR-DSS supports monitoring

what signage content a specific SCP is playing out

through webRTC[31], which will be explained in

detail in Section 4.8.

3.2 MR-DSCMS Server Architecture

MR-DSCMS is designed to consist of MR-

DSCMS Server and administrative web GUI client,

dashboard, which is loosely decoupled from

MR-DSCMS Server in the sense that they are

constructed as client/server based on MEARN

stack. Fig. 2 shows overall S/W architecture of

MR-DSCMS Server.

MR-DSCMS Server is designed to have three-

tier architecture (front-end layer (Nginx server),

application layer (MR-DSCMS application proc-

essing), data layer (database) based on MEAN

stack.

Front-end Nginx server plays a role of load

balancing. Application layer is responsible for han-

815Design and Implementation of MEARN Stack-based Real-time Digital Signage System

Fig. 2. S/W Architecture of MR-DSCMS Server.

Fig. 3. Node.js-based MR-DSCMS Application Layer
Architecture.

dling business logic about user, schedule, pre-

sentation, device, asset management, and etc., and

supports scalability to adapt traffics by increasing

Node.js application instances according to traffics.

The architecture of it is clarified in Section 3.4.

Data layer handles data access to a database

(MongoDB).

3.3 MR-DSCMS Server Data Layer

MR-DSCMS supports to manage user, asset,

device, schedule, presentation, system admin-

istration of MR-DSS, and so on. Thus, current

MongoDB is designed to consist of the following

collections; User, Device, Presentation, Asset,

Weekly Schedule, Real-time Schedule, Playlist,

Display Event, System Config, ECoin Transaction,

Device Status, User Logs, System Logs, Event

Logs, Sensor Status, Actuator Status, Audience

Response, and so on. The System Logs, and User

Logs are used to save history information of sys-

tem and user, and all these log information of more

than 30 days old will be cleaned automatically if

no other settings are not designated.

We use mongoose as Object Document Mapper

(ODM) for MongoDB. Through sharding, scal-

ability of MongoDB is supported. Mongod is the

primary daemon process for the MongoDB system.

It handles data requests, manages data access, and

performs background management operations.

Mongos for “MongoDB Shard,” is a routing service

for MongoDB shard configurations that processes

queries from the application layer, and determines

the location of this data in the sharded cluster, in

order to complete these operations. From the per-

spective of the application, a mongos instance be-

haves identically to any other MongoDB instance.

3.4 MR-DSCMS Server Application Layer Archi-
tecture

Fig. 3 shows the S/W architecture for MR-

DSCMS application layer of MR-DSCMS.

The MR-DSCMS server’s application layer is

constructed based on Node.js/Express.js and

MongoDB is utilized as a database. The server also

takes responsibility for managing contents, users,

device players, schedules comprehensively and

consistently. The server’s management services

are designed to be provided to clients by REST

816 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

Fig. 4. S/W Architecture of Signage Content Player.

APIs with the corresponding data stored on a

MongoDB database.

When a client sends a request using a REST

API to MR-DSCMS server, the router modules in

application layer will route and dispatch it to the

appropriate controller. Authentication/Authoriza-

tion manager handles the authentication and au-

thorization by using JWT (JSON Web Token). A

module in Controller layer processes the REST API

and, ask the corresponding manager in Manager

layer for dealing with the request task appropri-

ately. Socket.IO handler does in similar way to

router modules and dispatches a real-time commu-

nication request/response via on Socket.IO, to the

corresponding controller module.

Modules in Manager layer are responsible for

business logics handling nonreal-time manage-

ment tasks such as user management, device man-

agement, and so on, and real-time management

tasks (event handling, etc.). For scalable extension,

another instance of application layer based on a

Node.js/Express can be launched on a processing

unit like CPU.

3.5 Signage Content Player (SCP) Architecture

ReactJS is smaller and faster than AngularJS.

And, it is a library not a framework like AngularJS,

so that it can be easier to be integrated with other

libraries. The S/W architecture of Signage Content

Player (SCP) is illustrated in Fig. 4.

After SCP downloads a presentation description

in JSON format from MR-DSCMS server using

REST API or finds it from local storage, the pre-

sentation manager will parse the presentation

JSON description, and then the display manager

will construct virtual DOM using ReactJS API

based on parsing presentation information, and

render using ReactJS API into connected display

device in the Display Component process.

The Monitoring Service handles real-time SCP

status (live or dead) update, gathering information

such as playing mode, playing content type (pre-

sentation, playlist or schedule), the location, mem-

ory use, collection of surround sensors’ data, audi-

ence responses, and then report them to MR-

DSCMS server via Socket.IO. The screen of dis-

play device will also be captured and video will be

streamed to MR-DSCMS using singnalling and-

web RTC in this process, which will be explained

in more detail in Section 4.7.

Currently, we implemented Android version as

well as PC version. SCP on PC is constructed

based on electron platform [32], Android version

implemented above architecture using native an-

droid framework, and is being migrated into

React-based architecture using Reactive native.

3.6 Dashboard Architecture

The architecture of MR-DSCMS Dashboard is

illustrated in Fig. 5, which are constructed on

Angular2 framework. Basically, components with

views in component layer are designed respectively

for each dashboard administrative work; user

management, presentation management, schedule

management, device management, layout editor,

statistics, log, system management and so on.

Layout editor component utilizes Fabric.JS, a

Javascript HTML5 canvas library. A content pre-

817Design and Implementation of MEARN Stack-based Real-time Digital Signage System

Fig. 5. S/W Architecture of Dashboard.

sentation edited by layout editor component is

saved in JSON format and saved into MR-DSCMS

server. Services at service layer provides REST

API handling with MR-DSCMS server for each

corresponding component.

4. Design Issues and Implementation of MR-
DSCMS

4.1 REST API Design

REST uses a client-server model, where the

server is an HTTP server and the client sends

HTTP verbs (GET, POST, PUT, DELETE), along

with a URL and variable parameters that are URL-

encoded. The URL describes the object to act upon

and the server replies with a result code and valid

JavaScript Object Notation (JSON) [14].

Because the server replies with JSON, it makes

the MEARN stack particularly well suited for our

application, as all the components are in JavaScript

and MongoDB interacts well with JSON. The

CRUD(CREATE, READ, UPDATE, and DELETE)

acronym is often used to describe database

operations. These database operations map very

nicely to the HTTP verbs; POST(insert or create

data into server), GET(retrieve data from server),

PUT(update the data into server), DELETE(re-

move data from server).

The REST HTTP API in this paper is structured

as the following format; ‘{METHOD}’ ‘https://API

domain/prefix/collection name/extra functions’

- Method: GET, POST, PUT, DELETE

- API domain: in our example, we use

‘api.erclab_ssu.com’

- Prefix: ∙ [auth] if need authentication

∙ Don’t have prefix if allow directly

access without authentication

- Collection name: the name of collection of

MongoDB which we want to deal with.

- Extra function: if the API is not basic CRUD,

it will need this.

Examples of API format are as follows.

- Login; {POST} http://api.erclabs_ssu.com/log-

in

- Get info of an asset; {GET}

http://api.erclabs_ssu.com/auth/asset

- Create an asset; {POST}

http://api.erclabs_ssu.com/auth/asset

- Update user information; {PUT}

http://api.erclabs_ssu.com/auth/user

4.2 Real-time Service Implementation based on
Socket.IO in MEARN platform

In time-sensitive information processing, polling

using HTTP isn't appropriate because it needs a

certain amount of time to get information. W3C

recommends the following APIs for real-time

communication for digital signage system: Web

Socket API, Server-Sent Events, Push API.

In the proposed system, we support real-time

communication by ‘publish/subscribe’ mechanism

based on Socket.IO library. When a client or CMS

server wants to receive real-time messages about

some events (disaster message, instant message,

818 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

notification message about new schedule/playlist,

signage player status message, sensor status mes-

sage, and etc.), then it calls ‘subscribe’ method with

the event type and a callback function. The

‘subscribe’ method first enrolls the event and call-

back function into the ‘subscribe’ management data

structure, and sends the event type to the other

party (CMS server or client). The other party en-

rolls it in the event receiver list. When the event

happens, then the other party calls for ‘publish’

method which looks for receivers of the event, and

sends the event message to receivers one by one

using Socket.IO function. When the event message

arrives, the callback function registered to ‘sub-

scribe management data structure’ is called and

handles the event message.

4.3 Authentication and Authorization

Authentication means the ability of the server

to determine the identity of the clients in a

transaction. Authorization means allowing or pre-

venting clients to use a particular resource or serv-

ice by the server. For the proposed system, JWT

(JSON Web Token) is utilized to authentication

and authorization since it is simple and efficient.

JSON Web Token (JWT) is a JSON-based open

standard (RFC 7519) for creating access tokens

that assert some number of claims. As opposed to

session cookie and OAuth2 protocol [33], JWT is

stateless in the sense that session information or

user state is saved in server memory. And it can

include additional claims such as the users email

address, who issued the token, scopes or permis-

sions for the user, and more while session cookie

contains only session id. Compared to OAuth2,

JWT is simple since it is just protocol, and it is

not a security framework like OAuth2. With a

cookie based approach, you simply store the ses-

sion id in a cookie. JWT's on the other hand allow

you to store any type of metadata, as long as it's

valid JSON. Depending on your use case, you may

choose to make the minimal amount of claims such

as the user id and expiration of the JWT, or you

may decide to include additional claims such as the

users email address, who issued the token, scopes

or permissions for the user, and more. The JWT

in the proposed system is designed to contain user

id, user level, issue time, life time. The life time

of JWT can be manually configured by the admin-

istrator (Super-admin).

As for authentication of REST HTTP API re-

quest, it works as follows. After a user logins, then

the MR-DSCMS server validates the user on the

backend by querying in the database. If the login

request is valid, the MR-DSCMS server creates

a JWT token by using the user information fetched

from the database, and then return that information

in the response header so that the user can store

the token in local storage. Once the client has that

token, they will store it in local storage. This token

is passed at the authorization header in every

REST HTTP API request. The JWT token accom-

panied with REST HTTP API request is validated

in ‘validateRequest’ middleware module in Express.

js.

As for authorization of REST HTTP API re-

quest about how much the API has privilege for

accessing resources including system information,

files, database information like asset, the in-

formation extracted from JWT such as user id,

user level, and others are utilized.

4.4 User Management

User management handles user registration,

login, and user level. User level is related with ac-

cess privilege to APIs, assets, and what each user

can see and what menus he is allowed to use.

According to user’s role, each user will have differ-

ent user level. The proposed MR-DSS supports

three level groups of users, which are stored in

“role” field of User model database; Admin group

(Super-Admin, Admin, Moderator), User group

(Agent, End-user, Anonymous), and Guest. Super-

Admin and Admin can manage everything, but

819Design and Implementation of MEARN Stack-based Real-time Digital Signage System

Fig. 6. JSON description example for regions in a pre-
sentation.

Admin can be many and added or removed. On the

other hand, Super-Admin has root privilege and it

can manage everything, and never be eliminated.

Moderator can manage information except for sys-

tem information.

Each end-user associates at least a SCP with

it. SCP is only allowed to be associated with to

a user. Each end-user group can be represented

by an agent. An end-user can belong to a group

managed by an agent by declaring an associated

agent. All user management is designed to be

processed in MR-DSCMS. User is related to au-

thentication, authorization, and device (SCP)

management. Based on the role of user, the system

will decide to give the permission to execute a

function or not.

The proposed system is designed also to allow

to log in through SNS like Facebook, google, and

twitter.

4.5 Presentation Management

A presentation is described by a JSON document.

The presentation JSON document describes not

only spatial layout of a content screen and but also

temporal synchronization among regions and

among assets in a region. Temporal synchroniza-

tion allows slideshows, animation of images in a

region.

The presentation description contains two man-

datory main parts: meta, regions, and one optional

part; timing. A presentation can have one or many

regions. Meta part of a presentation, denoted by

Meta_P in JSON documents, keeps the attributes

of presentation such as the presentation id, pre-

sentation name, owner, status, onStore. creation/

modification time-stamp, type, size, resource URL,

category, usage level, lock property, and the ori-

entation of display. Lock property determines

whether the presentation can be edited by the

group of owner or buyers except the owner. Status

represents activation; activated(default), deactivated.

Onstore attribute shows whether the presentation

belongs to store or not. Timing part of a pre-

sentation, denoted by Timing_P in JSON docu-

ments, has description about temporal synchroni-

zation among regions based on SMIL Timesheets

if any.

Similarly, each region contains two mandatory

parts; meta and assets, and one optional timing

part. Each region can be composed of one or many

assets of the same type. Meta part of region

(denoted by Meta_R) keeps the attributes of the

region such as the region id, creation/modification

time-stamp, asset type, size (width, height), posi-

tion (x,y) in the layout, z-order, asset list, usage

level, and lock property. Asset list keeps the num-

ber of assets, asset ids. Asset part has also meta

part and data part. Meta part of asset, denoted by

Meta_a, has attributes like asset id, asset name,

asset type, asset size, asset file extension, and so

on. Data part of the asset has a text string for text

type and file id or URL if asset types are image

or video. Timing part of a region, denoted by

Timing_R in JSON documents, has description

about temporal synchronization among assets

based on SMIL Timesheets if any. Fig. 6 shows

820 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

Fig. 7. Signalling and video streaming architecture be-
tween dashboard and SCP.

a JSON description example for regions in a pre-

sentation which has image assets and optional tim-

ing part about how to animate images.

4.6 Schedule/Playlist/Display Management

The playlist lists presentations to be displayed

with durations in a SCP. There is two types of

schedule: weekly and real-time schedule. The

weekly schedule file that assigns start time, play-

ing duration, and playing days in a week to each

presentation. The real-time schedule file that as-

signs flexible start time information as a calendar.

The schedule contains meta information about pre-

sentations, name of presentation, days in week to

display, start time, and playing duration time.

The information about playlist and schedule

contents are kept in the corresponding collections

in database. MR-DSCMS allows users to edit

schedule/playlists for associated display devices

(SCP). The updated schedule/playlist can be dif-

ferent from the original schedule/playlist in

contents. If the updated ones can be still applied

to the same display devices, then the original

schedule/playlist can keep the same ID except dif-

ferent presentations. However, if the updated

schedule/playlist has different applicable display

devices (SCPs), the updated schedule/playlist will

be assigned a new ID and the original ones will

be assigned a new ID by Schedule/Playlist Mana-

ger in order to keep consistent management of

schedule/playlists.

There might be a time conflict between event

driven contents and scheduled contents. Recently,

digital signages are developed to be interactive so

that they can provide additional information (event

driven contents) in response to user inputs.

Advertisers want a signage to display their paid

advertisements (scheduled contents) on time.

Advertisement is a major funding source for digital

signages. Therefore, it is required to handle this

issue. In SMIL 3.0, there is a discussion of unifying

event based and scheduled timing for multimedia

presentation. Currently, we are working for the

unification.

4.7 System Monitoring

Each SCP on the system always keep a con-

nection with MR-DSCMS for reporting real-time

status update. SCP will send a real-time updated

status message through ‘publish/subscribe’ mech-

anism (constructed based on Socket.IO) to MR-

DSCMS at start time, and periodically during oper-

ation and when there is any status change. This

status information will be kept in corresponding

models (DeviceStatus, Sensorstatus, EventLogs,

SensorStatus, ActuatorStatus, AudienceResponse),

which are used to diagnose and analyze system

status, audience response for system monitoring.

Then, MR-DSCMS provides relevant users the

necessary statistical data, such as weekly system

status report or audience response report.

SCP also supports capturing a screen shot.

When a user wants to see what is playing on a

specific SCP in entire network, from the dashboard,

he requests a signaling via Socket.IO to the signal-

ing manager in CMS server. Then, singnalling

manager sends asking for signaling information to

the SCP. Then, the singnalling manager sends

back video channel connection between dashboard

and the SCP, which has been obtained from outside

STUN server, to each dashboard and the SCP.

Then, the dashboard and SCP establishes webRTC

821Design and Implementation of MEARN Stack-based Real-time Digital Signage System

(a) Log-in GUI (b) HomeGUI after Log-on

Fig. 8. (a) Log-in GUI, (b) Home of MR-DSCMS's
Dashboard.

(a) Presentation lists (b) Layout editor

Fig. 9. Presentation lists and Layout Editor GUI.

Fig. 10. Dispatching scheduled presentation for signage
content players and working environment.

video session channel between two. Then, the SCP

sends the screen shot captured by WebRTC Tab

Content Capture API to the dashboard via webRTC

channel.

5. EXPERIMENTS
5.1 Evaluation of System Operations

We tested and evaluated our implementation of

the proposed system. Currently, we mainly con-

centrated on testing of managing MR-DSCMS and

working between MR-DSCMS located in Google

Cloud and SCP. Two components can communi-

cate each other through Internet. Fig. 8 shows log-

in GUI (left) and home administrator GUI (right)

of MR-DSCMS’s dashboard GUI respectively.

After logging on, end users see home administrator

GUI which shows the statistical data analysis.

Dashboard supports administrative manage-

ments, which are shown in the left frame in Fig.

8(b). Fig. 9(a) shows presentation lists after one

selects ‘presentation’ menu in the left frame in Fig.

8(b). Fig. 9(b) shows Layout editor GUI.

Dispatching a scheduled signage content to sig-

nage content players and working environment

(Smartphone, set-top-box, monitor) are shown in

Fig. 10.

Through lots of testing, it is evaluated that all

of tried users feel editing the contents (presenta-

tions) and dispatching them into signage content

platers to be done conveniently and smoothly and

observer engaged SCPs to play the presentations

according to schedules well.

5.2 Evaluation of Networking Load Performance

5.2.1 Performance Evaluation of Response time and

Throughput of REST APIs

For the load performance evaluation of the pro-

posed MR-DSCMS, we tested response times of

REST APIs of MR-DSCMS and compared them

with those of REST CMS APIs of a famous open

source LAMP-based DSS, Xibo (version 1.8) [3].

Xibo supports two types of APIs; Player APIs and

CMS APIs. Player APIs are for exchange of in-

formation about content display and display sta-

tistics between Xibo CMS and Xibo Players. The

Player APIs are constructed based on SOAP

service. Xibo CMS APIs[34] are for providing CMS

management information and are constructed as

REST APIs under LAMP environments. Function-

alities provided by either soap-based Player APIs

or REST-based CMS APIs of Xibo are done by

REST APIs in the proposed MR-DSCMS. We did

not test the response times of the SOAP-based

CMS APIs since SOAP is well known to be slower

822 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

Table 1. Experimental results of Network load test about REST APIs of MR-DSCMS

APIs
Avg.

(ms)

Min

(ms)

Max

(ms)

Std

Dev

Throughtput

(req/sec)

Avg

Byte

Players 70 63 171 13.97 22.9/sec 795.0

Users 71 64 143 10.83 22.9/sec 245.0

Presentations 69 62 140 11.94 22.9/sec 801.0

Schedules 70 63 142 12.71 22.9/sec 803.0

Assets 69 63 139 11.00 22.9/sec 798.0

Overall 69.8 63 171 12.09 22.9/sec 688.4

Table 2. Experimental results of Network load test about REST APIs of Xibo-DSCMS

APIs
Avg

(ms)

Min

(ms)

Max

(ms)

Std

Dev

Throughtput

(req/sec)

Avg

Byte

Displays 756 108 4424 546.07 2.6/sec 346.3

Users 782 99 5026 593.95 2.6/sec 1181.3

Layouts 744 104 4517 535.95 2.6/sec 1091.3

Schedules 740 106 4267 526.39 2.6/sec 227.3

Medias 758 102 6261 551.24 2.6/sec 4045.3

Overall 756 99 6261 550.68 2.6/sec 1378.3

than REST APIs[34]. Comparison with other com-

mercial DSS’s with respect to performance was not

possible due to unavailability of them. We installed

the proposed MR-DSCMS and Xibo CMS in

Google cloud platform (Google Compute Engine)

under the same computing environments; Machine

Type: g1-small, CPU: 0.5 vCPU Intel Zeon 2.6 GHz

Intel Xeon E5 (Sandy Bridge), RAM: 1.7GB.

For fair comparison, we chose five APIs with

similar functionalities from MR-DSCMS and

Xibo-CMS [35]. Measurements have done by

Apache JMeter tool [36] configured with 1000 sam-

ples (request numbers) where each REST API is

called. Table 1 and Table 2 summarize experi-

mental results with JMeter. In Tables, ‘Samples’

denotes the number of REST API requests ran for

given thread, and ‘Average’ means the average re-

sponse time in millisecond for that particular REST

API, “Throughput’ means the number of requests

per second, that are sent to MR-DSCMS or Xibo-

CMS during the test, and ‘Avg. Bytes’ means the

average size of the sample response in bytes.

Experimental results of Table 1 and Table 2

show that overall, the REST APIs of the proposed

MR-DSCMS performs faster and produces more

throughput than those of the open source Xibo-

CMS. These experimental results comes from the

fact that Node.js/Express.js framework is lighter

and more efficient in handling requests with light

processing than Apache/PHP framework and that

processing REST APIs on MEAN stack is simpler

and easily than that on LAMP stack.

5.2.2 Performance Evaluation of Real-time Com-

munication Service based on Socket.IO

In digital signage systems, CMS needs to send

real-time messages like instant message to play-

ers, and a player needs to send its status in-

formation to CMS in real-time [28]. In the proposed

MR-DSS, real-time messaging service is sup-

ported via on Socket.IO. As for how commercial

DSS’s support real-time messaging service is not

publicly exposed. Open source Xibo DSS supports

a push message mechanism called XMR(Xibo

Message Relay) based on a messaging queueing

service, ZeroMQ[36] for sending updated schedules

823Design and Implementation of MEARN Stack-based Real-time Digital Signage System

Table 3. Testing results of Real-time Communication sercives by Socket.IO messages in MR-DSS

Socket.IO

message type

Success

Rate (%)

Min Resp

(ms)

Max Resp

(ms)

Media Resp

(ms)

99p Resp

(ms)

RPS

(reqs/sec)

status 100 0.2 11.3 0.4 2.3 49.16

event 100 0.1 3.1 0.3 1 49.2

or presentations to players. ZeroMQ is constructed

directly on the top of TCP. On the other hand,

Socket.IO is constructed on the top of HTTP, and

thus it is an application layer protocol. Thus,

ZeroMQ is faster than Socket.IO [37,38]. However,

ZeroMQ does not run in web browser. Moreover,

ZeroMQ does not use 80 port or http port unlike

Socket.IO so that any global-based networking

system utilizing ZeroMQ should handle firewall

problem. Sovcket.IO is seamless under MEARN

stack environments. That is one of main reasons

why the proposed MR-DSS chooses to base

Socket.IO for providing real-time messaging

service. Here, we provide testing results of the

performance of real-time messaging service of the

proposed MR-DSS, but we don’t provide compar-

ison between real-time messaging service of

MR-DSS and Xibo’s XMR since it is clear that

Xibo’s XMR is faster than the real-time messaging

of the proposed MR-DSS [38,39].

For the performance evaluation, we utilized

‘Artillery’ tool [40] to test the networking perform-

ance of the Socket.IO handling module of the pro-

posed MR-DSCMS. In ‘Artillery’ tool, testing en-

vironments are configured as follows. 100 users

from our lab’s computer client are set to con-

tinuously send the Socket.IO ‘event’ and ‘status’

message to the proposed MR-DSCMS during 30

seconds, which works at Google cloud platform

under the same computing environments as that

of the testing environments of REST APIs.

Socket.IO ‘event’ message handling is by default

supported by Socket.IO library and Socket.IO

‘status’ message handling is implemented in re-

al-time messaging service module of MR-DSCMS,

which returns success or failure response depend-

ing on the result of updating the status information

into the MongoDB.

Table 3 shows testing results about performance

evaluation of real-time communication service

built on the top of Socket.IO in MR-DSS. In Table

3, ‘# of virtual users’ means the number of virtual

users created during 30 seconds, ‘#of Socket.IO

messages sent’ means total number of Socket.IO

messages sent during 30 seconds, and ‘RPS(Re-

quests/sec)’ is the average number of requests per

second completed in the preceding 10 seconds (or

throughout the test).

Experimental data in Table 3 with comparison

to those in Table 1 and 2 show that Socket.IO-

based real-time messaging is much faster than

REST API-based web service. As it is now well

known, in web application environments, Socket.IO

is popular adopted in implementation of real-time

messaging service since it is simple but fast

enough.

5. CONCLUSIONS
In this paper, we proposed a MEARN stack-

based real-time digital signage system (MR-DSS)

which supports real-time operation for system

management and monitoring, fast content update,

instant messaging, as well as non real-time CMS

services via REST APIs. In addition to explanation

of component architecture, some design and im-

plementation issues were clarified. Experimental

results show that REST APIS of the proposed

MR-DSS are efficiently implemented so that they

are faster than those of an open source digital sig-

nage system, Xibo.

Currently, we are testing stability and scalability

of MR-DSS under various environments. Scalabil-

ity will be important for MR-DSSS since it aims

824 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

to serve cloud-based worldwide digital signage

service in the future. In addition to multiple Node.js

application instances and MongoDB sharding, re-

al-time communication service based on Socket.IO

will be investigated experimentally about load per-

formance, and the experimental results will be ana-

lyzed for improvement of scalability.

REFERENCES
[1] ITU-T Technology Watch Report, Digital

Signage: The Right Information in All the

Right P laces, 2011.

[2] R. Gushue, What is a Digital Signage Content

Management System?, https://enplug.com

/blog/what-is-a-digital-signage-content-

management-system.

(accessed April., 25, 2017).

[3] Xibo,http://xibo.org.uk/.

(accessed April., 25, 2017).

[4] Signagelive, https://signagelive.com/

(accessed April., 25, 2017).

[5] RESTful API, Learn RESTful: A RESTful

Tutorial, http://www.RESTfulapitutorial.com/

(accessed April., 25, 2017).

[6] MEAN Stack, http://mean.io/

(accessed April., 25, 2017).

[7] MERN Stack, http://mern.io/

(accessed April., 25, 2017).

[8] MongoDB, https://www.mongodb.com/

(accessed April., 25, 2017).

[9] Express.js, https://expressjs.com/

(accessed April., 25, 2017).

[10] Node.js, https://nodejs.org/en/

(accessed April., 25, 2017).

[11] AngularJS, https://angularjs.org/

(accessed April., 25, 2017).

[12] ReactJS, https://facebook.github.io/react/

(accessed April., 25, 2017).

[13] Socket.IO, http://Socket.IO/

(accessed April., 25, 2017).

[14] JSON, http://json.org/

(accessed April., 25, 2017).

[15] Ghost, https://ghost.org/

(accessed April., 25, 2017).

[16] Keystone, http://keystonejs.com/

(accessed April., 25, 2017).

[17] Ulbora CMS, http://www.ulboracms.org/#!/

(accessed April., 25, 2017).

[18] Nginx, https://www.nginx.com/

(accessed April., 25, 2017).

[19] F. Cazenave, V. Quint, and C. Roisin, “Time-

sheets.js: When SMIL Meets HTML5 and

CSS3,” Proceedings of the Eleventh ACM

Symposium on Document Engineering, pp.

43-52, 2011.

[20] W3C, SMIL 3.0 Timing and Synchronization,

https://www.w3.org/TR/SMIL3/smil-timing.

html (accessed April., 25, 2017).

[21] W3C, SMIL Timesheets 1.0, https://www.

w3.org/TR/timesheets/. (accessed April., 25,

2017).

[22] Kyeong Hur, “Distributed Medium Access

Control for N-Screen Multicast Services in

Home Networks,” Journal of Korea Multime-

dia Society, Vol. 19, No. 3, pp. 567-572, March

2016.

[23] POPAI, http://www.popia.com

(accessed April., 25, 2017).

[24] Intel Digital Signage Technology, http://www.

intel.com/content/www/us/en/retail/retail-

digital-signage.html. (accessed April., 25, 2017).

[25] Digital Signage Federation, http://www.digi

talsignagefederation.org/

(accessed April., 25, 2017).

[26] ITU-T H.780, Digital Signage: Service

Requirements and IPTV-based Architecture,

ITU-T SG16, 2012.

[27] W3C, Web Authentication Working Group

Charter, https://www.w3.org/2015/12/web-

authentication-charter.html

(accessed April., 25, 2017).

[28] W3C, Web-based Signage Use Cases and

Requirements, Final Business Group Report

21, https://www.w3.org/2016/websigns/ucr/

825Design and Implementation of MEARN Stack-based Real-time Digital Signage System

(accessed April., 25, 2017).

[29] W3C, Synchronized Multimedia Integration

Language (SMIL 3.0), https://www.w3.org/

TR/2008/REC-SMIL3-20081201/

(accessed April., 25, 2017).

[30] SCXML, State Chart XML (SCXML): State

Machine Notation for Control Abstraction,

https://www.w3.org/TR/scxml/

(accessed April., 25, 2017).

[31] WebRTC, https://webrtc.org/

(accessed April., 25, 2017).

[32] Electron, http://electron.atom.io/

(accessed April., 25, 2017).

[33] OAuth 2.0, https://oauth.net/2/

(accessed April., 25, 2017).

[34] S. Mumbaikar and P. Padiya, “Web Services

Based On SOAP and RESTful Principles,”

International Journal of Scientific and Research

Publications, Vol. 3, Issue 5, pp. 1-4, May 2013.

[35] Xibo-DSS APIs, http://xibo.org.uk/manual-

tempel/api/ (accessed April., 25, 2017).

[36] Jmeter, http://jmeter.apache.org/usermanual

/glossary.html (accessed April., 25, 2017).

[37] ZeroMQ, http://zeromq.org/

(accessed April., 25, 2017).

[38] Quora, How does Socket.IO Compare with a

Message Queueing Service like ZeroMQ for

Inter-process Communication?, https://www.

quora.com/How-does-Socket-io-compare-

with-a-message-queueing-service-like-

ZeroMQ-for-inter-process-communication

(accessed April., 25, 2017).

[39] InfiniBand Tests, http://zeromq.org/results:

ib- tests-v206 (accessed April., 25, 2017).

[40] Artillery Tool, https://artillery.io/docs/ get-

tingstarted.html (accessed April., 25, 2017).

826 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 20, NO. 5, MAY 2017

Khue Trinh Duy

He received the Engineer degree

in computer engineering from

the Hanoi University of Science

and Technology, Hanoi, Viet-

nam, in 2014. He is currently a

research assistant at Embedded

Real-time Computing Labor-

atory, Soongsil University, Seoul, South Korea. His

main areas of research interest are embedded systems,

image processing, IO, mobile and web technology.

Thanh Binh Nguyen

He received the B. Eng. degree

in computer science from the

University of Science, Ho Chi

Minh, Vietnam, in 2005, the M.

Sc. degree in information and

telecommunication engineering

from the University of SoongSil,

Seoul, South Korea, in 2010, and the Ph.D. degree in

engineering at the University of SoongSil, Seoul,

South Korea, in 2017. He is currently a principal soft-

ware R&D researcher at Embedded Vision Inc., Seoul,

South Korea, assistant at Embedded Real- time

Computing Lab, University of Soongsil, Seoul, South

Korea. His research interests cover the design and

analysis of various smart embedded software system,

I.O.T and also intelligent image, video analytic algo-

rithms which is applied to visual surveillance, recog-

nition systems, and etc.

Ukjin Jang

He received the Engineer degree

in computer engineering from

the Soongsil University, Seoul,

Korea, in 2016. He is currently

a research assistant at Embed-

ded Real-time Computing La-

boratory, Soongsil University,

Seoul, South Korea. His main areas of research interest

include modern web technology, and IoT.

ChanBin Kim

He received the B. Eng. degree

in computer science from Soong-

sil University in 2014. He is cur-

rently a research assitant at

Embedded Real-time Computing

Laboratory, Soongsil University.

His research interests include

modern web technology, data mining system, and em-

bedded systems.

Sun-Tae Chung

He received B.E. degree from

Seoul National University, and

M.S. degree and Ph.D. degree in

Electrical Eng. and Computer

Science from the University of

Michigan, Ann Arbor, USA, in

1986 and 1990, respectively.

Since 1991, he had been with the School of Electronic

Eng. at the Soongsil university, Seoul, Korea where

he is now a full professor. Now, he has been with the

Dept. of Smart Systems Software, at the Soongsil

Univ. since 2015. His research interests include digital

signage, computer vision, visual surveillance, and em-

bedded systems.

