References
- J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, et al., "Recent Advances in Convolutional Neural Networks," arXiv:1512.07108, 2017.
- N.T. Binh, N.V. Tuan, and S.T. Chung, "Real-time Human Detection under Omni-directional Camera based on CNN with Unified Detection and AGMM for Visual Surveillance," Journal of Korea Multimedia Society, Vol. 19, No. 8, pp. 1345-1360, 2016. https://doi.org/10.9717/kmms.2016.19.8.1345
- R. Stewart and M. Andriluka, "End-to-end People Detection in Crowded Scenes," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325-2333, 2016.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al, "Going Deeper with Convolutions," Proceeding of Computer Vision and Pattern Recognition (CVPR) , pp. 1-9, 2015.
- M. Lin, Q. Chen, and S. Yan, "Network in Network," arXiv:1312.4400, 2013.
- O. Russakovsky, "ImageNet Large Scale Visual Recognition Challenge," International Journal of Computer Vision, Vol. 115, No. 3, pp. 211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
- C. Olah, Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Underst anding-LSTMs/ (accessed Feb., 14, 2017).
- K.Y. Chang, T.L. Liu, H.T. Chen, and S.H. Lai, "Fusing Generic Objectless and Visual Saliency for Salient Object Detection," Proceeding of International Conference on Computer Vision, pp. 914-921, 2011.
- C. Yang, L. Zhang, H. Lu, X. Ruan, and M. Yang, "Saliency Detection via Graph-Based Manifold Ranking," Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition, pp. 3166-3173, 2013.
- VATIC: Video Annotation Tool from Irvine, California, http://web.mit.edu/vondrick/vatic/ (accessed Feb., 14, 2017).
- ViPER: The Video Performance Evaluation Resource, http://viper-toolkit.sourceforge.net (accessed Feb., 14, 2017).
- LabelMe, http://labelme.csail.mit.edu/Release3.0/ (accessed Feb., 14, 2017).
- LabelImg, https://github.com/tzutalin/labelImg (accessed Feb., 14, 2017).
- X. Wang, M. Wang, and W. Li, "Scene-Specific Pedestrian Detection for Static Video Surveillance," IEEE Transactionson Pattern Analysis and Machine Intelligence, Vol. 36, No. 2, pp. 361-374, 2014. https://doi.org/10.1109/TPAMI.2013.124
- J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How Transferable are Features in Deep Neural Networks?," Advances in Neural Information Processing Systems 27, pp. 3320-3328, 2014.
- K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the Devil in the Details: Delving Deep into Convolutional Nets," Proceedings of British Machine Vision Conference, pp. 18-19, 2014.
- D. Xing, W. Dai, G.R. Xue, and Y. Yu, "Bridged Refinement for Transfer Learning," Proceeding of European Conference on Principles and Practice of Knowledge Discovery in Databases, Lecture Notes in Computer Science, pp. 324-335, 2007.
- X. Zeng, W. Ouyang, and M. Wang, "Deep Learning of Scene-Specific Classifier for Pedestrian Detection," Proceeding of Europe an Conference on Computer Vision, pp 472-487, 2014.
- A. Mhalla, T. Chateau, and S. Gazzah, "Scene-Specific Pedestrian Detector Using Monte Carlo Framework and Faster R-CNN Deep Model," Proceeding of International Conference on Distributed Smart Camera, pp. 228-229, 2016.
- H. Maamatou, T. Chateau, S. Gazzah, Y. Goyat, and N. Essoukri Ben Amara, "Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene," Proceeding of International Conference on Computer Vision Theory and Applications, pp. 411-422, 2016.
- T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, et al., "Learning to Detect a Salient Object," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 353-367, 2011.
- L. Wang, J. Xue, N. Zheng, and G. Hua, "Automatic Salient Object Extraction with Contextual Cue," Proceeding of International Conference on Computer Vision, pp.105-112, 2011.
- P. Dollar, C. Wojek, B. Schiele, and P. Perona, "Pedestrian Detection: An Evaluation of th State of the Art," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, Issue 4, pp. 743-761, 2011. https://doi.org/10.1109/TPAMI.2011.155
- Bomni-DB Hompage, https://www.cmpe.boun.edu.tr/pilab/pilabfiles/databases/bomni/ (accessed Feb., 14, 2017).
Cited by
- Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법 vol.21, pp.8, 2017, https://doi.org/10.9717/kmms.2018.21.8.864
- 어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기 vol.22, pp.2, 2017, https://doi.org/10.9717/kmms.2019.22.2.128