DOI QR코드

DOI QR Code

Protective Role of Curcuma longa L. Extracts on Hydrogen Peroxide-Induced DNA Damage in Human Leukocytes

산화적 스트레스로 유도된 인체 백혈구 DNA 손상에 대한 울금 추출물의 보호효과

  • Seo, Bo-Young (Department of Food and Nutrition, Changshin University) ;
  • Park, Eunju (Department of Food and Nutrition, Kyungnam University)
  • 서보영 (창신대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양생명학과)
  • Received : 2017.02.09
  • Accepted : 2017.02.24
  • Published : 2017.05.31

Abstract

Curcuma longa L. (CL) is widely used as a spice and coloring agent in several foods, such as curry and mustard, as well as cosmetics and drugs. In this study, we investigated the protective effects of CL extracted with various solvents [methanol (MC), ethanol (EC), acetone (AC)] on $H_2O_2-induced$ DNA damage in human leukocytes along with total polyphenol contents (TPC) and antioxidant properties. The antioxidant effects of CL were determined by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and superoxide dismutase (SOD)-like activity. The preventive effect of CL on oxidative stress-induced DNA damage and DNA repair capacities were assessed using comet assay. MC showed the highest TPC (11.17 g gallic acid equivalents/100 g) and antioxidant properties among the solvent extracts. The $SC_{50}$ for DPPH RSA was MC: 35.0 > AC: 45.8 > EC: $57.8{\mu}g/mL$ and SOD-like activity was MC: 46.6 > EC: 141.5 > AC: $296.4{\mu}g/mL$. In the comet assay, the $ED_{50}$ value of MC showed the highest inhibition ($86.7{\mu}g/mL$) of $H_2O_2-induced$ DNA damage, followed by AC ($110.0{\mu}g/mL$) > EC ($115.8{\mu}g/mL$). Analysis of the percentage of damaged cells showed that repair capacity significantly decreased at 4, 8, and 12 h from $H_2O_2-induced$ oxidative stress in each extract. After 12 h, level of DNA damage recovery was similar to the negative control level. These results suggest that CL has potential antioxidant activity and a protective effect against oxidation-induced DNA damage, and the methanol extract of CL was the most effective.

울금은 간질환, 기관지염, 폐질환 및 심장질환에 효과적인 식물로 알려져 있으며, 항산화 및 세포보호에도 작용하는 것으로 알려져 있다. 이러한 울금을 아세톤, 에탄올, 메탄올 등으로 추출하여 울금에 함유된 총 폴리페놀 함량(TPC) 및 DPPH 라디칼 소거능, SOD 유사활성 등의 항산화력 그리고 comet assay를 이용한 DNA 손상억제 효능 및 회복능을 분석하고자 하였다. 그 결과 TPC는 울금의 메탄올 추출물($11.17{\pm}0.00g\;GAE/100g$), 아세톤 추출물($1.45{\pm}0.00g\;GAE/100g$), 에탄올 추출물($1.17{\pm}0.02g\;GAE/100g$)의 순으로 나타나 메탄올 추출물에 가장 많은 폴리페놀이 함유된 것으로 나타났다. 항산화력을 분석한 DPPH 라디칼 소거능 및 SOD 유사활성 분석 결과 역시 메탄올 추출물이 가장 강력한 활성을 보였으며, 그다음으로 에탄올, 아세톤 추출물의 순으로 나타났다. Comet assay를 이용한 DNA 손상 억제력을 분석한 결과 모든 추출물 처리구가 추출물을 처리하지 않은 positive control(PC)에 비해 유의적인 DNA 손상 억제력을 보였으며, $ED_{50}$값 분석 결과 메탄올 추출물이 $86.7{\mu}g/mL$, 아세톤 추출물이 $110.0{\mu}g/mL$, 에탄올 추출물이 $115.8{\mu}g/mL$의 순으로 나타나 메탄올 추출물의 활성이 가장 높은 것으로 나타났다. 울금 추출물 처리 4, 8, 12시간 후의 DNA 손상 회복력을 분석한 결과, negative control(NC)의 경우 시간 경과에 따른 회복 능력 변화가 크지 않았으나 추출물 처리구에서는 1시간 후 증가한 DNA 손상이 시간 의존적으로 회복되는 것을 확인하였으며, 특히 12시간 후의 회복 수준은 NC와 동일한 수준임을 확인할 수 있었다. 추출물을 처리하지 않은 NC에 대한 추출물 처리구의 DNA repair half time을 분석한 결과, PC가 9.5시간으로 가장 오랜 시간이 걸린 데 반해 메탄올 추출물이 6.6시간, 아세톤 추출물이 7.1시간, 에탄올 추출물이 7.6시간으로 메탄올 추출물이 DNA 손상 회복에 가장 짧은 시간이 소요되는 것으로 나타났다. 결론적으로 본 연구를 통해 아세톤, 에탄올, 메탄올 등의 용매를 이용한 울금 추출물의 항산화 활성, DNA 손상 억제 및 회복활성을 확인하였다. 추출용매에 따른 활성비교에서는 메탄올 추출물에서 가장 높은 활성이 나타났으므로 메탄올이 울금의 폴리페놀을 비롯한 항산화물 추출에 가장 효율적인 용매라는 것을 알 수 있었다. 그러나 본 연구에서는 항산화력을 가진 대표물질인 폴리페놀 성분만을 분석하여 폴리페놀 중 어떤 성분이 항산화력에 영향을 보인 것인지 알 수 없으므로, 차후 연구에서는 용매별 항산화물 성분 분석을 통해 항산화력 및 항유전독성 효과에 기인하는 물질이 무엇인지 근거가 뒷받침되어야 할 것으로 판단된다.

Keywords

References

  1. Surh YJ, Chun KS. 2007. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 595: 149-172.
  2. Philpott M, Ferguson LR. 2007. Cancer prevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets 7: 459-464. https://doi.org/10.2174/156800907781386605
  3. Johnson JJ, Mukhtar H. 2007. Curcumin for chemoprevention of colon cancer. Cancer Lett 255: 170-181. https://doi.org/10.1016/j.canlet.2007.03.005
  4. Aggarwal BB, Harikumar KB. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41: 40-59. https://doi.org/10.1016/j.biocel.2008.06.010
  5. Miriyala S, Panchatcharam M, Rengarajulu P. 2007. Cardioprotective effects of curcumin. Adv Exp Med Biol 595: 359-377.
  6. Imlay JA. 2003. Pathways of oxidative damage. Annu Rev Microbiol 57: 395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
  7. Perrone GG, Tan SX, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  8. Eigner D, Scholz D. 1999. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67: 1-6. https://doi.org/10.1016/S0378-8741(98)00234-7
  9. Cuvelier ME, Richard H, Berset C. 1992. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 56: 324-325. https://doi.org/10.1271/bbb.56.324
  10. Frei B, England L, Ames BN. 1989. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86: 6377-6381. https://doi.org/10.1073/pnas.86.16.6377
  11. Ammon HRT, Wahl MA. 1991. Pharmacology of Curcuma longa. Planta Med 57: 1-7. https://doi.org/10.1055/s-2006-960004
  12. Park J, Lee J, Jun W. 2013. Radical scavenging and anti-obesity effects of various extracts from turmeric (Curcuma longa L.). J Korean Soc Food Sci Nutr 42: 1908-1914. https://doi.org/10.3746/jkfn.2013.42.12.1908
  13. Oh H, Park H, Ju MS, Jung SY, Oh MS. 2010. Comparative study of anti-oxidant and anti-inflammatory activities between Curcumae longae Radix and Curcumae longae Rhizoma. Korea J Herbol 25: 83-91.
  14. Ju JC, Shin JH, Lee SJ, Cho HS, Sung NJ. 2006. Antioxidative activity of hot water extracts from medicinal plants. J Korean Soc Food Sci Nutr 35: 7-14. https://doi.org/10.3746/jkfn.2006.35.1.007
  15. Araujo CAC, Leon LL. 2001. Biological activities of Curcuma longa L.. Mem Inst Oswaldo Cruz 96: 723-728. https://doi.org/10.1590/S0074-02762001000500026
  16. Singh N, Rajini PS. 2004. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem 85: 611-616. https://doi.org/10.1016/j.foodchem.2003.07.003
  17. Oyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 142: 290-296. https://doi.org/10.1016/0003-2697(84)90467-6
  18. Ak T, Gulcin I. 2008. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174: 27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  19. Diplock AT. 1997. Will the 'good fairies' please prove to us that vitamin E lessens human degenerative disease?. Free Radical Res 27: 511-532.
  20. Collins AR, Dusinska M, Gedik CM, Stetina R. 1996. Oxidative damage to DNA: do we have a reliable biomarker?. Environ Health Perspect 104: 465-469. https://doi.org/10.1289/ehp.96104s3465
  21. Bub A, Watzl B, Blockhaus M, Briviba K, Liegibel U, Muller H, Pool-Zobel BL, Rechkemmer G. 2003. Fruit juice consumption modulates antioxidative status, immune status and DNA damage. J Nutr Biochem 14: 90-98. https://doi.org/10.1016/S0955-2863(02)00255-3
  22. Fenech M, Stockley C, Aitken C. 1997. Moderate wine consumption protects against hydrogen peroxide-induced DNA damage. Mutagenesis 12: 289-296. https://doi.org/10.1093/mutage/12.4.289
  23. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, Brown PO. 2003. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 100: 1896-1901. https://doi.org/10.1073/pnas.252784499
  24. Deutsch JC. 1998. Ascorbic acid oxidation by hydrogen peroxide. Anal Biochem 255: 1-7. https://doi.org/10.1006/abio.1997.2293
  25. Blasiak J, Trzeciak A, Kowalik J. 1999. Curcumin damages DNA in human gastric mucosa cells and lymphocytes. J Environ Pathol Toxicol Oncol 18: 271-276.
  26. Shibata H, Sakamoto Y, Oka M, Kono Y. 1999. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci Biotechnol Biochem 63: 1295-1297. https://doi.org/10.1271/bbb.63.1295
  27. Plappert U, Barthel E, Raddatz K, Seidel HJ. 1994. Early effects of benzene exposure in mice. Hematological versus genotoxic effects. Arch Toxicol 68: 284-290. https://doi.org/10.1007/s002040050070
  28. Fillion L, Collins A, Southon S. 1998. Beta-carotene enhances the recovery of lymphocytes from oxidative DNA damage. Acta Biochim Pol 45: 183-190.
  29. Szeto YT, Collins AR, Benzie IFF. 2002. Effects of dietary antioxidants on DNA damage in lysed cells using a modified comet assay procedure. Mutat Res 500: 31-38. https://doi.org/10.1016/S0027-5107(01)00298-6

Cited by

  1. 울금(Curcuma longa L.) 첨가 식이가 이상지질혈증 흰쥐의 지질성분 및 단백질 농도에 미치는 영향 vol.36, pp.1, 2017, https://doi.org/10.12925/jkocs.2019.36.1.47