DOI QR코드

DOI QR Code

An integral based fuzzy approach to evaluate waste materials for concrete

  • Onat, Onur (Department of Civil Engineering, Munzur University) ;
  • Celik, Erkan (Department of Industrial Engineering, Munzur University)
  • Received : 2016.07.26
  • Accepted : 2017.01.10
  • Published : 2017.03.25

Abstract

Waste materials in concrete have been considered as one of the most important issues by the authorities, policy makers and researchers to maintain engineering serviceability in terms of economy, durability and sustainability. Therefore, evaluation and selection of waste materials with respect to multi criteria decision making (MCDM) for the construction industry has been gained importance for recovery and reuse. In this paper, Choquet integral based fuzzy approach is proposed for evaluating the most suitable waste materials with respect to compressive strength, tensile strength, flexural strength, compactness, toughness (resistivity for dynamic loads), water absorption and accessibility. On conclusion, waste tyre and silica fume were determined as the most suitable waste materials for concrete production. The obtained results are recommended to assist the authorities on configuring well designed strategies for construction industry with disposal materials.

Keywords

References

  1. Akyuz, E. and Celik, E. (2015), "A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers", J. Loss Prevent. Proc. Indust., 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.006
  2. Akcaozu, S., Atis, C.D. and Akcaozu, K. (2010), "An investigation on the use of shredded waste pet bottles as aggregate in light weight concrete", Waste Manage., 30, 285-290. https://doi.org/10.1016/j.wasman.2009.09.033
  3. Albano, C., Camacho, N., Hernandez, M., Matheus, A. and Gutierrez, A. (2009), "Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratio", Waste Manage., 29, 2707-2716. https://doi.org/10.1016/j.wasman.2009.05.007
  4. Alexander, M.G. and Magee, B.J. (1999), "Durability performance of concrete containing condensed silica fume", Cement Concrete Res., 29(6), 917-922 https://doi.org/10.1016/S0008-8846(99)00064-2
  5. Aliabdo, A.A., Elmoaty, A., Elmoaty, M.A. and Auda, M. (2014), "Re-use of waste marble dust in the production of cement and concrete", Constr. Build. Mater., 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
  6. Andre, A., Brito, J., Rosa, A. and Pedro, D. (2014), "Durability performance of concrete incorporating coarse aggregates from marble industry waste", J. Clean. Product., 65, 389-396. https://doi.org/10.1016/j.jclepro.2013.09.037
  7. Angilella, S., Greco, S. and Matarazzo, B. (2010), "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral", Eur. J. Operation. Res., 201(1), 277-288. https://doi.org/10.1016/j.ejor.2009.02.023
  8. Aruntas, H.Y., Guru, M., Dayi, M. and Tekin, I. (2010), "Utilization of waste marble dust as an additive in cement production", Mater. Des., 31(8), 4039-4042. https://doi.org/10.1016/j.matdes.2010.03.036
  9. Ashayeri, J., Tuzkaya, G. and Tuzkaya, U.R. (2012), "Supply chain partners and configuration selection: An intuitionistic fuzzy Choquet integral operator based approach", Exp. Syst. Appl., 39(3), 3642-3649. https://doi.org/10.1016/j.eswa.2011.09.055
  10. Askari, M., Li, J. and Samali, B. (2016), "Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms", Smart Struct. Syst., 18(5), 1005-1028. https://doi.org/10.12989/sss.2016.18.5.1005
  11. Auephanwiriyakul, S., Keller, J.M. and Gader P.D. (2002), "Generalized Choquet fuzzy integral fusion", Inform. Fusion, 3(1), 69-85. https://doi.org/10.1016/S1566-2535(01)00054-9
  12. Aydin, N., Celik, E. and Gumus, A.T. (2015), "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul", Transport. Res. Part A: Policy and Practice, 77, 61-81. https://doi.org/10.1016/j.tra.2015.03.029
  13. Aydin, K. and Kisi, O. (2015), "Damage detection in structural beam elements using hybrid neuro fuzzy systems", Smart Struct. Syst., 16(6), 1107-1132. https://doi.org/10.12989/sss.2015.16.6.1107
  14. Babu, K.G. and Prakash, P.V.S. (1995), "Efficiency of silica fume in concrete", Cement Concrete Res., 25(6), 1273-1283. https://doi.org/10.1016/0008-8846(95)00120-2
  15. Bagheri, A., Zanganeh, H., Alizadeh, H. and Shakerinia, M. (2013), "Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash", Constr. Build. Mater., 47, 1402-1408. https://doi.org/10.1016/j.conbuildmat.2013.06.037
  16. Bhanja, S. and Sengupta, B. (2005), "Influence of silica fume on the tensile strength of concrete", Cement Concrete Res., 35(4), 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024
  17. Binici, H., Shah, T., Aksogan, O. and Kaplan, H. (2008), "Durability of concrete made with granite and marble as recycle aggregates", J. Mater. Proc. Technol., 208(1), 299-308. https://doi.org/10.1016/j.jmatprotec.2007.12.120
  18. Buyukozkan, G., Feyzioglu, O. and Ersoy, M.S. (2009), "Evaluation of 4PL operating models: A decision making approach based on 2-additive Choquet integral", Int. J. Product. Economic., 121(1), 112-120. https://doi.org/10.1016/j.ijpe.2008.03.013
  19. Cemalgil, S. and Onat, O. (2016), "Compressive strength and abrasion resistance of concrete with waste marble and demolition aggregate", Int. J. Pure Appl. Sci., 2(1), 13-21.
  20. Chan, D. and Sun, C.P. (2006), "Effects of fine recycled aggregate as sand replacement in concrete", HKIE Transactions, 13(4), 2-7.
  21. Chandra, S. and Berntsson, L. (1996), "Use of silica fume in concrete", Waste Materials Used in Concrete Manufacturing, 554-623.
  22. Chao-Lung, H., Anh-Tuan, B.L. and Chun-Tsu, C. (2011), "Effect of rice husk ash on the strength and durability characteristics of concrete", Constr. Build. Mater., 25(9), 3768-3772. https://doi.org/10.1016/j.conbuildmat.2011.04.009
  23. Chiou, H.K. and Tzeng, G.H. (2002), "Fuzzy multiple-criteria decision-making approach for industrial green engineering", Environ. Manage., 30(6), 0816-0830. https://doi.org/10.1007/s00267-002-2673-z
  24. Choi, Y.W., Moon, D.J., Chung, J.S. and Cho, S.K. (2005), "Effects of waste pet bottles aggregate on the properties of concrete", Cement Concrete Res., 35(4), 776-781. https://doi.org/10.1016/j.cemconres.2004.05.014
  25. Cakir, O. and Sofyanli, O.O. (2015), "Influence of silica fume on mechanical and physical properties of recycled aggregate concrete", HBRC J., 11(2), 157-166. https://doi.org/10.1016/j.hbrcj.2014.06.002
  26. Celik, E., Gul, M., Aydin, N., Gumus, A.T. and Guneri, A.F. (2015), "A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets", Knowledge-Based Syst., 85, 329-341. https://doi.org/10.1016/j.knosys.2015.06.004
  27. Celik, E., Bilisik, O.N., Erdogan, M., Gumus, A.T. and Baracli, H. (2013), "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul", Transport. Res. Part E: Logistic. Transport. Rev., 58, 28-51. https://doi.org/10.1016/j.tre.2013.06.006
  28. Deluka-Tibjas, A., Karleusa, B. and Dragicevic, N. (2013), "Review of multicriteria-analysis methods application in decision making about transport infrastructure", Gradevinar, 65(7), 619-631.
  29. Demirel, T., Demirel, N.C. and Kahraman, C. (2010), "Multicriteria warehouse location selection using Choquet integral", Exp. Syst. Appl., 37(5), 3943-3952. https://doi.org/10.1016/j.eswa.2009.11.022
  30. Erdogan, M. and Kaya, I. (2015), "An integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey", Iran. J. Fuzz. Syst., 12(1), 1-25.
  31. Ergun, A. (2011), "Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete", Constr. Build. Mater., 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
  32. Evangelista, L. and Brito, J. (2014), "Concrete with fine recycled aggregates: a review", Eur. J. Environ. Civ. Eng., 18(2), 129-172. https://doi.org/10.1080/19648189.2013.851038
  33. Ferraro, R.M. and Nanni, A. (2012), "Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete", Constr. Build. Mater., 31, 220-225. https://doi.org/10.1016/j.conbuildmat.2011.12.010
  34. Frigione, M. (2010), "Recycling of pet bottles as fine aggregate in concrete", Waste Manage., 30(6), 1101-1106. https://doi.org/10.1016/j.wasman.2010.01.030
  35. Gameiro, F., Brito, J. and Correia da Silva, D. (2014), "Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry", Eng. Struct., 59, 654-662. https://doi.org/10.1016/j.engstruct.2013.11.026
  36. Gesoglu, M., Guneyisi, E., Kocabag, M.E., Bayram, V. and Mermerdas, K. (2012), "Fresh and hardened characteristics of self-compacting concretes made with combined use of marble powder, limestone filler, and fly ash", Constr. Build. Mater., 37, 160-170. https://doi.org/10.1016/j.conbuildmat.2012.07.092
  37. Giaccio, G., Sensale, G.R. and Zerbino, R. (2007), "Failure mechanism of normal and high-strength concrete with rice-husk ash", Cement Concrete Compos., 29(7), 566-574. https://doi.org/10.1016/j.cemconcomp.2007.04.005
  38. Giner, V.T., Ivorra, S., Baeza, F.J., Zornoza, B. and Ferrer, B. (2011), "Silica fume admixture effect on the dynamic properties of concrete", Constr. Build. Mater., 25(8), 3272-3277. https://doi.org/10.1016/j.conbuildmat.2011.03.014
  39. Gonen, T., Onat, O., Cemalgil, S., Yilmazer, B. and Altuncu, Y.T. (2012), "A review on new waste materials for concrete technology", Electron. J. Constr. Technol., 8(1), 36-43.
  40. Gul, M., Celik, E., Aydin, N., Gumus, A.T. and Guneri, A.F. (2016a), "A state of the art literature review of VIKOR and its fuzzy extensions on applications", Appl. Soft Comput., 46, 60-89. https://doi.org/10.1016/j.asoc.2016.04.040
  41. Gul, M. and Guneri, A.F. (2016), "A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry", J. Loss Prevent. Proc. Indust., 40, 89-100. https://doi.org/10.1016/j.jlp.2015.11.023
  42. Gul, M., Ak, M.F. and Guneri, A.F. (2017), "Occupational health and safety risk assessment in hospitals: A case study using twostage fuzzy multi-criteria approach", Human Ecologic. Risk Assess.: An Int'l J., 23(2), 187-202. https://doi.org/10.1080/10807039.2016.1234363
  43. Hebhoub, H., Aoun, H., Belachia, M., Houari, H. and Ghorbel, E. (2011), "Use of waste marble aggregates in concrete", Constr. Build. Mater., 25(3), 1167-1171. https://doi.org/10.1016/j.conbuildmat.2010.09.037
  44. Hopfe, C.J., Augenbroe, G.L.M. and Hensen, J.L.M. (2013), "Multi-criteria decision making under uncertainty in building performance assessment", Build. Environ., 69, 81-90. https://doi.org/10.1016/j.buildenv.2013.07.019
  45. Hu, Y.C. and Chen, H.C. (2010), "Choquet integral-based hierarchical networks for evaluating customer service perceptions on fast food stores", Exp. Syst. Appl., 37(12), 7880-7887. https://doi.org/10.1016/j.eswa.2010.04.049
  46. Ishii, K. and Sugeno, M. (1985), "A model of human evaluation process using fuzzy integral", Int. J. Man-Machine Studies, 22(1), 19-38. https://doi.org/10.1016/S0020-7373(85)80075-4
  47. Jang, L.C. (2012), "Note on the Choquet integral as an intervalvalued aggregation operators and their applications", J. Appl. Math., Article ID 154670, 1-13.
  48. Jato-Espino, D.J., Hernandez, J.R., Valeri, V.C.A. and Munoz, F.B. (2014b), "A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements", Exp. Syst. Appl., 41(15), 6807-6817. https://doi.org/10.1016/j.eswa.2014.05.008
  49. Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J. and Canteras-Jordana, J.C. (2014), "A review of application of multi-criteria decision making methods in construction", Automat. Constr., 45, 151-162. https://doi.org/10.1016/j.autcon.2014.05.013
  50. Karatas, M., Turk, K. and Ulucan, Z.C. (2010), "Investigation of bond between lap-spliced steel bar and self-compacting concrete: the role of silica fume", Can. J. Civ. Eng., 37(3), 420-428. https://doi.org/10.1139/L09-159
  51. Karsak, E.E. (2005), "Choquet integral-based decision making approach for robot selection", 9th International Conference on Knowledge-based Intelligent Information and Engineering System - Volume Part II, 635-641.
  52. Kaya, I. (2012), "Evaluation of outsourcing alternatives under fuzzy environment for waste management. Resources", Conserv. Recycling, 60, 107-118. https://doi.org/10.1016/j.resconrec.2011.12.006
  53. Kim, D.I., Yoo, W.S., Cho, H. and Kang, K.I. (2014a), "A fuzzy AHP-based decision support model for quantifying failure risk of excavation work", KSCE J. Civ. Eng., 18(7), 1966-1976. https://doi.org/10.1007/s12205-014-0538-7
  54. Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, A.M. and Pang, S. (2004b), "Waste tire fiber modified concrete", Composites: Part B, 35(4), 305-312. https://doi.org/10.1016/j.compositesb.2004.01.002
  55. Li, G., Stubblefield, A.M., Garrick, G., Eggers, J., Abadie, C. and Huang, B. (2004a), "Development of waste tyre modified concrete", Cement Concrete Res., 34(12), 2283-2289. https://doi.org/10.1016/j.cemconres.2004.04.013
  56. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
  57. Mohammadhassani, M., Nezamabadi-pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785
  58. Ozkir, V.c., Efendigil, T., Demirel, T., Demirel, N.c ., Deveci, M. and Topcu, I.B. (2015), "A three-stage methodology for initiating an effective management system for electronic waste in Turkey", Resour., Conserv. Recycling, 96, 61-70. https://doi.org/10.1016/j.resconrec.2015.01.008
  59. Pan, N.F. (2008), "Fuzzy AHP approach for selecting the suitable bridge construction method", Automat. Constr., 17(8), 958-965. https://doi.org/10.1016/j.autcon.2008.03.005
  60. Panyakapo, P. and Panyakapo, M. (2008), "Reuse of thermosetting plastic waste for light weight concrete", Waste Manage., 28(9), 1581-1588. https://doi.org/10.1016/j.wasman.2007.08.006
  61. Popovics, S. (1993), "Portland cement-fly ash-silica fume systems in concrete", Adv. Cement Bas. Mater., 1(2), 83-91. https://doi.org/10.1016/1065-7355(93)90013-E
  62. Rao, A., Jha, K.N. and Misra, S. (2007), "Use of aggregates from recycled construction and demolition waste in concrete", Resour., Conserv. Recycling, 50, 71-81. https://doi.org/10.1016/j.resconrec.2006.05.010
  63. Siddique, R. (2011), "Utilization of silica fume in concrete: review of hardened properties", Resour., Conserv. Recycling, 55, 923-932. https://doi.org/10.1016/j.resconrec.2011.06.012
  64. Silva, D.A., Betioli, A.M., Gleize, P.J.P., Roman, H.R., Gomez, L.A. and Riberio, J.L.D. (2005), "Degradation of recyled pet fibers in portland cement-based materials", Cement Concrete Res., 35(9), 1741-1746. https://doi.org/10.1016/j.cemconres.2004.10.040
  65. Skibniewski, M. and Chao, L. (1992), "Evaluation of advanced construction technology with AHP method", J. Constr. Eng. Manage., 118(3), 577-593. https://doi.org/10.1061/(ASCE)0733-9364(1992)118:3(577)
  66. Song, K.S., Hajirasouliha, I. and Pilakoutas, K. (2011), "Strength and deformability of waste tyre rubber-filled reinforced concrete columns", Constr. Build. Mater., 25(1), 218-226. https://doi.org/10.1016/j.conbuildmat.2010.06.035
  67. Sugeno, M. (1974), "Theory of fuzzy integrals and its applications", Ph.D. thesis, Tokyo Institute of Technology, Tokyo.
  68. Tan, C. and Chen, X. (2010), "Intuitionistic fuzzy Choquet integral operator for multi criteria decision making", Exp. Syst. Appl., 37(1), 149-157. https://doi.org/10.1016/j.eswa.2009.05.005
  69. Tan, C. (2011), "A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS", Exp. Syst. Appl., 38(4), 3023-3033. https://doi.org/10.1016/j.eswa.2010.08.092
  70. Tavares, R.M., Tavares, J.M.L. and Parry-Jones, S.L. (2008), "The use of a mathematical multicriteria decision-making model for selecting the fire origin room", Build. Environ., 43(12), 2090-2100. https://doi.org/10.1016/j.buildenv.2007.12.010
  71. Topcu, I.B. and Sengel, S. (2004), "Properties of concretes produced with waste concrete aggregate", Cement Concrete Res., 34(8), 1307-1312. https://doi.org/10.1016/j.cemconres.2003.12.019
  72. Topcu, I.B., Bilir, T. and Uygunoglu, T. (2009), "Effect of waste marble dust content as filler on properties of self-compacting concrete", Constr. Build. Mater., 23(5), 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
  73. Topcu, Y.I. (2004), "A decision model proposal for construction contractor selection in Turkey", Build. Environ., 39(4), 469-481. https://doi.org/10.1016/j.buildenv.2003.09.009
  74. Toutanji, H.A. (1996), "The use of rubber tire particles in concrete to replace mineral aggregates", Cement Concrete Compos., 18(2), 135-139. https://doi.org/10.1016/0958-9465(95)00010-0
  75. Tsai, H.H. and Lu, I.Y. (2006), "The evaluation of service quality using generalized Choquet integral", Inform. Sci., 176(6), 640-663. https://doi.org/10.1016/j.ins.2005.01.015
  76. Turk, K., Karatas, M. and Gonen, T. (2013), "Effect of Fly Ash and Silica Fume on compressive strength, sorptivity and carbonation of SCC", KSCE J. Civ. Eng., 17(1), 202-209. https://doi.org/10.1007/s12205-013-1680-3
  77. Tzeng, G.H., Yang, Y.P.O., Lin, C.T. and Chen, C.B. (2005), "Hierarchical MADM with fuzzy integral for evaluating enterprise intranet web sites", Inform. Sci., 169(3), 409-426. https://doi.org/10.1016/j.ins.2004.07.001
  78. Venkatanarayan, H.K. and Rangaraju, P.R. (2015), "Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete", Cement Concrete Compos., 55, 348-363. https://doi.org/10.1016/j.cemconcomp.2014.09.021
  79. Wagih, A.M., El-Karmoty, H.Z., Ebid, M. and Okba, S.H. (2013), "Recycled construction and demolition concrete waste as aggregate for structural concrete", HBRC J., 9(3), 193-200. https://doi.org/10.1016/j.hbrcj.2013.08.007
  80. Wong, J.K.W. and Li, H. (2008), "Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building system", Build. Environ., 43(1), 108-125. https://doi.org/10.1016/j.buildenv.2006.11.019
  81. Worrel, E., Price, L., Martin, N., Hendricks, C. and Meida, L.O. (2001), "Carbondioxide emission from the global cement industry", Ann. Rev. Energy Environ., 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
  82. Yazgan, H.R., Boran, S. and Goztepe, K. (2010), "Selection of dispatching rules in FMS: ANP model based on BOCR with choquet integral", Int. J. Manufact. Technol, 49(5), 785-801. https://doi.org/10.1007/s00170-009-2416-x
  83. Yuzer, N., Cinar, Z., Akoz, F., Biricik, H., Gurkan, Y.Y., Kabay, N. and Kizilkanat, A.B. (2013), "Influence of raw rice husk addition on structure and properties of concrete", Constr. Build. Mater., 44, 54-62. https://doi.org/10.1016/j.conbuildmat.2013.02.070
  84. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  85. Zerbino, R., Giaccio, G. and Isasia, G.C. (2011), "Concrete incorporating rice-husk ash without processing", Constr. Build. Mater., 25(1), 371-378. https://doi.org/10.1016/j.conbuildmat.2010.06.016

Cited by

  1. Sustainable Decision-Making in Civil Engineering, Construction and Building Technology vol.10, pp.1, 2017, https://doi.org/10.3390/su10010014
  2. A cause and effect relationship model for location of temporary shelters in disaster operations management vol.22, 2017, https://doi.org/10.1016/j.ijdrr.2017.02.020
  3. Curing effect on mortar properties produced with styrene-butadiene rubber vol.21, pp.6, 2017, https://doi.org/10.12989/cac.2018.21.6.705
  4. Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar vol.27, pp.3, 2017, https://doi.org/10.12989/cac.2021.27.3.241