DOI QR코드

DOI QR Code

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium

다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석

  • 정우창 (경남대학교 공과대학 토목공학과)
  • Received : 2017.03.22
  • Accepted : 2017.04.12
  • Published : 2017.05.31

Abstract

In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

본 연구에서는 다공성 매질의 공극율과 투수능 그리고 유체의 동점성 계수와 같은 물리적 특성에 따른 유체흐름의 비선형 거동에 대한 수치적 분석을 수행하였다. 적용된 수치모형은 ANSYS CFX 3차원 유동해석 모형이며, 모형의 검증은 기존의 물리적 실험 결과 및 수치모의 결과의 적용을 통해 수행되었으며, 적용된 압력경사와 유속과의 관계 그리고 마찰계수와 레이놀즈 수와의 관계에 대해 비교적 잘 일치하였다. 다공성 매질의 공극율과 투수능 그리고 유체의 동점성 계수의 값을 변화시키면서 모의한 결과 유체의 동점성 계수가 다공성 매질의 유체흐름의 비선형 거동에 가장 큰 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Ahmed, N., and Sunuda, D. K. (1969). "Nonlinear flow in porous media." Journal of Hydraulics Division, ASCE, Vol. 95, No. 6, pp. 1847-1857.
  2. Bear, J., and Batchmat, Y. (1986). "Macroscopic modelling of transport phenomena in porous media 2: Applications to mass, momentum and energy transport." Transport in Porous Media, Vol. 1, pp. 241-269. https://doi.org/10.1007/BF00238182
  3. Chauveteau, G., and Thirriot, C. R. (1967). "Regimes d'ecoulement en milieu poreux et limite de la loi de Darcy." La Houille Blanche, Vol. 2, pp. 141-148.
  4. Cheng, N. S., Hao, Z., and Tan, S. L. (2008). "Comparison of quadratic and power law for nonlinear flow through porous media." Experimental Thermal and Fluid Science, Vol. 32, pp. 1538-1547. https://doi.org/10.1016/j.expthermflusci.2008.04.007
  5. Churchill, S. W. (1988). Viscous flows - the practical use of theory. Butterworths series in chemical engineering.
  6. Darcy, H. P. G. (1856). "Les Fontaines Publiques de la Ville de Dijon." Victor Dalmont, Paris, pp. 1-250.
  7. Dillien, F. A. L. (1992). Porous media: fluid transport and pore structure. San Diego, CA, Academic Press.
  8. Firoozabadi, A., and Katz, D. L. (1979). "An analysis of high-velocity gas flow through porous media." Journal of Petroleum Technology, pp. 211-216.
  9. Forchheimer, P. (1901). Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieuer, 45 edition.
  10. Francher, G. H., Lewis, J. A., and Barnes, K. B. (1933). Some physical characteristics of oil sands. Bull 12, Pennsylvania State C., Minerals Industries Experiment Station, University Park, 65.
  11. Greertsma, J. (1974). "Estimating the coefficient of inertial resistance in fluid flow through porous media." Society of Petroleum Engineers Journal, pp. 445-450.
  12. Helmig, R. (1997). "Multiphase flow and transport processes in the subsurfaces: a contribution to the modelling of hydrosystems." Springer, pp. 1-450.
  13. Jeong, W. C. (2014). "A numerical study on propagation characteristics of dam-break wave through a porous structure." Journal of Korea Water Resources Association, Vol. 47, No. 1, pp. 11-24. https://doi.org/10.3741/JKWRA.2014.47.1.11
  14. Jeong, W. C. (2015). "A numerical study on behavior of fresh water body between injection and production wells with variation of fresh water injection rate in a saline aquifer." Journal of Korea Water Resources Association, Vol. 48, No. 1, pp. 23-35. https://doi.org/10.3741/JKWRA.2015.48.1.23
  15. Mayer B., Bernard, W., Heselhaus, A., and Crawford, M. (2011). Heat transfer and pressure drop in a regular porous structure at high Reynolds number. Technical report, Zeszyty Naukowe Politechniki Poznanskiej.
  16. Muskat, M. (1937). The flow of homogeneous fluids through porous media. McGraw-Hill Book Company, New York.
  17. Scheidegger, A. E. (1960). "The growth of instabilities on displacement fronts in porous media." Physics of Fluids, Vol. 3, No. 1, pp. 94-104. https://doi.org/10.1063/1.1706009
  18. Skjetne, E. (1995). High-velocity flow in porous media, ana;ytical numerical and experiment studies. Ph. D Thesis, Department of Petroleum Engineering and Applied Geophysics, Norway University of Science and Technology.
  19. Skjetne, E. (2011). Forchheimer porous-meda flow models - numerical investigation and comparison with experimental data. Master's Thesis, Lehrstuhl fur Hydromechanik und Hydrosystemmodellierung, Universitat Stuttgart: Institut fur Wasser-und Umweltsystemmodellierung, Germany.
  20. Skjetne, E., and Auriault, J. L. (1999a). "New insights on steady, non-linear flow in porous media." European Journal of Mechanics-B/Fluids, Vol. 18, pp. 131-145. https://doi.org/10.1016/S0997-7546(99)80010-7
  21. Skjetne, E., and Auriault, J. L. (1999b). "High-velocity laminar and turbulent flow in porous media." Transport in Porous Media, Vol. 36, pp. 131-147. https://doi.org/10.1023/A:1006582211517
  22. Tiss, M., and Evans, R. D. (1989). "Measurement and correlation of non-Darcy flow coefficient in consolidated porous media." Journal of Petroleum Science and Engineering, pp. 19-33.
  23. Wright, D. E. (1968). "Non-linear flow through granular media." Journal of Hydraulics Division, ASCE, Vol. 94, 851.