DOI QR코드

DOI QR Code

2D Adjacency Matrix Generation using DCT for UWV Contents

DCT를 통한 UWV 콘텐츠의 2D 인접도 행렬 생성

  • Xiaorui, Li (Department of Electronic Engineering, Kyung Hee University) ;
  • Kim, Kyuheon (Department of Electronic Engineering, Kyung Hee University)
  • 이소율 (경희대학교 전자정보대학) ;
  • 김규헌 (경희대학교 전자정보대학)
  • Received : 2016.12.19
  • Accepted : 2017.03.31
  • Published : 2017.05.30

Abstract

Since a display device such as TV or digital signage is getting larger, the types of media is getting changed into wider view one such as UHD, panoramic and jigsaw-like media. Especially, panoramic and jigsaw-like media is realized by stitching video clips, which are captured by different camera or devices. However, a stitching process takes long time, and has difficulties in applying for a real-time process. Thus, this paper suggests to find out 2D Adjacency Matrix, which tells spatial relationships among those video clips in order to decrease a stitching processing time. Using the Discrete Cosine Transform (DCT), we convert the each frame of video source from the spatial domain (2D) into frequency domain. Based on the aforementioned features, 2D Adjacency Matrix of images could be found that we can efficiently make the spatial map of the images by using DCT. This paper proposes a new method of generating 2D adjacency matrix by using DCT for producing a panoramic and jigsaw-like media through various individual video clips.

TV나 디지털 사이니지와 같은 화면표시장치들이 점점 커져감에 따라, 미디어의 종류가 UHD, 파노라마, 퍼즐형 미디어와 같은 광각의 미디어로 변하고 있다. 특히, 파노라마 및 퍼즐형 미디어는 스티칭을 통해 복수개의 카메라로 촬영된 비디오 클립을 합성한 형태로 구성된다. 그러나, 스티칭 과정의 처리 시간이 오래 걸리기 때문에 실시간 서비스에는 적용하기 어려운 문제가 있다. 따라서 본 논문에서는 스티칠 처리 시간을 감소하기 위한 방법으로, 영상간의 공간적 연관관계를 알려주는 2D Adjacency Matrix를 생성하는 것을 제안한다. Discrete Cosine Transform (DCT)를 사용하여, 비디오 소스의 각 프레임을 공간 영역에서 주파수 영역으로 변환 시킨다. 앞서 언급한 DCT 계수를 기반으로 효과적으로 이미지들의 공간적 연관관계를 알려주는 2D Adjacency Matrix를 생성한다. 본 논문에서는 각각의 비디오 클립들로부터 파노라마 영상과, 퍼즐형 미디어를 생성하기 위해 DCT를 이용한 2D Adjacency matrix 생성 방법을 제안한다.

Keywords

References

  1. Lee, Guk-Hee, et al. "The Effect of Matching between Odor and Color on Video Reality and Sense of Immersion." Journal of Broadcast Engineering 19.6 (2014): 877-895. https://doi.org/10.5909/JBE.2014.19.6.877
  2. Guo, Heng, et al. "Joint Video Stitching and Stabilization From Moving Cameras." IEEE Transactions on Image Processing 25.11 (2016): 5491. https://doi.org/10.1109/TIP.2016.2607419
  3. Szeliski, Richard, and Heung-Yeung Shum. "Creating full view panoramic image mosaics and environment maps." Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997.
  4. Shum, H-Y., and Richard Szeliski. "Construction of panoramic image mosaics with global and local alignment." Panoramic vision. Springer New York, 2001. 227-268.
  5. Lowe, David G. "Distinctive image features from scale-invariant keypoints."International journal of computer vision 60.2 (2004): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  6. Speeded up robust features (https://en.wikipedia.org/wiki/Speeded_up_robust_features)
  7. Kang, Seung Heon, et al. "Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU." Journal of Broadcast Engineering 19.3 (2014): 316-328. https://doi.org/10.5909/JBE.2014.19.3.316
  8. Chen, Wen-Hsiung, and C. Smith. "Adaptive coding of monochrome and color images." IEEE Transactions on Communications 25.11 (1977): 1285-1292. https://doi.org/10.1109/TCOM.1977.1093763
  9. Le Gall, Didier. "MPEG: A video compression standard for multimedia applications." Communications of the ACM 34.4 (1991): 46-58.
  10. Pandey, Achala, and Umesh C. Pati. "A novel technique for mosaicing of medical images." 2014 Annual IEEE India Conference (INDICON). IEEE, 2014.
  11. Choi, Sung-Woo, and Oh-Seol Kwon. "Face Recognition using High-order Local Pattern Descriptor and DCT-based Illuminant Compensation." Journal of Broadcast Engineering 21.1 (2016): 51-59. https://doi.org/10.5909/JBE.2016.21.1.51
  12. Narasimha, M., and A. Peterson. "On the computation of the discrete cosine transform." IEEE Transactions on Communications 26.6 (1978): 934-936. https://doi.org/10.1109/TCOM.1978.1094144
  13. Makhoul, John. "A fast cosine transform in one and two dimensions." IEEE Transactions on Acoustics, Speech, and Signal Processing 28.1 (1980): 27-34. https://doi.org/10.1109/TASSP.1980.1163351
  14. Bhattacharyya, A. "On a Measure of Divergence between Two Multinomial Populations." Sankhya: The Indian Journal of Statistics (1933-1960), vol. 7, no. 4, 1946, pp. 401-406., www.jstor.org/stable/25047882.
  15. OpenCV Reference (http://docs.opencv.org)