Poly (4-vinylphenol) 게이트 절연체를 적용한 IGZO TFT의 열처리 온도에 따른 전기적 특성 분석

Electrical Characteristic Analysis of IGZO TFT with Poly (4-vinylphenol) Gate Insulator according to Annealing Temperature

  • 박정현 (충남대학교 전자전파정보통신공학과) ;
  • 정준교 (충남대학교 전자전파정보통신공학과) ;
  • 김유정 (충남대학교 전자전파정보통신공학과) ;
  • 정병준 (충남대학교 전자전파정보통신공학과) ;
  • 이가원 (충남대학교 전자공학과)
  • Park, Jung Hyun (Dept. of Electronic Radio Information Communication Engineering) ;
  • Jeong, Jun Kyo (Dept. of Electronic Radio Information Communication Engineering) ;
  • Kim, Yu Jeong (Dept. of Electronic Radio Information Communication Engineering) ;
  • Jun, Jung Byung (Dept. of Electronic Radio Information Communication Engineering) ;
  • Lee, Ga Won (Dept. of Electronics Engineering, Chungnam National Univ.)
  • 투고 : 2017.03.17
  • 심사 : 2017.03.27
  • 발행 : 2017.03.31

초록

In this paper, IGZO thin film transistor (TFT) was fabricated with cross-linked Poly (4-vinylphenol) (PVP) gate dielectric for flexible, transparent display applications. The PVP is one of the candidates for low-temperature gate insulators. MIM structure was fabricated to measure the leakage current and evaluate the insulator properties according to the annealing temperature. Low leakage current ( <0.1nA/cm2 @ 1MV/cm ) was observed at $200^{\circ}C$ annealing condition and decreases much more as the annealing temperature increases. The electrical characteristics of IGZO TFT such as subthreshold swing, mobility and ON/OFF current ratio were also improved, which shows that the performance of IGZO TFTs with PVP can be enhanced by reducing the amount of incomplete crosslinking in PVP.

키워드

참고문헌

  1. Lee, J. H., Kim, D. H., Yang, D. J., Hong, S. Y., Yoon, K. S., Hong, P. S., Jeong, C. O., Park, H. S., Kim, S. Y., Lim, S. K., Kim, S. S., Son, K. S., Kim, T. S., Kwon, J. Y., Lee, S. Y., "42.2: World's Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT." SID Symposium Digest of Technical Papers, Vol. 39, pp. 625-628, (2008).
  2. Jeong, Y., Pearson, C., Kim, H. G., Park, M. Y., Kim, H., Do, L. M., Petty, M. C., "Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors" ACS applied materials & interfaces, Vol. 8(3), pp.2061-2070, (2016). https://doi.org/10.1021/acsami.5b10520
  3. Hwang, B. U., Kim, D. I., Cho, S. W., Yun, M. G., Kim, H. J., Kim, Y. J., Cho, H. K., Lee, N. E., " Role of ultrathin Al 2 O 3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors" Organic Electronics, Vol. 15(7), pp. 1458-1464, (2014). https://doi.org/10.1016/j.orgel.2014.04.003
  4. Majewski, L. A., Grell, M., Ogier, S. D., Veres, J., "A novel gate insulator for flexible electronics" Organic Electronics, Vol. 4(1), pp. 27-32, (2003). https://doi.org/10.1016/S1566-1199(03)00005-3
  5. Lee, J. H., Kim, S. H., Kim, G. H., Lim, S. C., Lee, H., Jang, J., Zyung, T., "Pentacene thin film transistors fabricated on plastic substrates" Synthetic Metals Vol. 139(2), pp. 445-451, (2003). https://doi.org/10.1016/S0379-6779(03)00197-8
  6. Angmo, D., Gevorgyan, S. A., Larsen-Olsen, T. T., Sondergaard, R. R., Hosel, M., Jorgensen, M., Gupta, R., Kulkarni, G. U., Krebs, F. C., " Scalability and stability of very thin, roll-to-roll processed, large area, indiumtin-oxide free polymer solar cell modules." Organic Electronics, Vol. 14(3), pp. 984-994, (2013). https://doi.org/10.1016/j.orgel.2012.12.033
  7. Wang, Y., Sun, X. W., Goh, G. K. L., Demir, H. V., Yu, H. Y., "Influence of channel layer thickness on the electrical performances of inkjet-printed In-Ga-Zn oxide thin-film transistors." IEEE Transactions on Electron Devices, Vol. 58(2), pp. 480-485, (2011). https://doi.org/10.1109/TED.2010.2091131
  8. Klauk, H. eds., Organic electronics: materials, manufacturing and applications., John Wiley & Sons, (2006).