References
- Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics. 2015;14:841-53. https://doi.org/10.1074/mcp.M114.044222
- Fan H, Tan Z, Hua Y, Huang X, Gao Y, Wu Y, Liu B, Zhou Y. Deep sea water improves exercise and inhibits oxidative stress in a physical fatigue mouse model. Biomed Rep. 2016;4:751-7. https://doi.org/10.3892/br.2016.651
- Huang L-Z, Huang B-K, Ye Q, Qin L-P. Bioactivity-guided fractionation for antifatigue property of Acanthopanax senticosus. J Ethnopharmacol. 2011;133:213-9. https://doi.org/10.1016/j.jep.2010.09.032
- Huang W-C, Lin C-I, Chiu C-C, Lin Y-T, Huang W-K, Huang H-Y, Huang C-C. Chicken essence improves exercise performance and ameliorates physical fatigue. Nutrients. 2014;6:2681-96. https://doi.org/10.3390/nu6072681
- Huang W-C, Chiu W-C, Chuang H-L, Tang D-W, Lee Z-M, Wei L, Chen F-A, Huang C-C. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients. 2015;7:905-21. https://doi.org/10.3390/nu7020905
- Jiang D-Q, Guo Y, Xu D-H, Huang Y-S, Yuan K, Lv Z-Q. Antioxidant and anti-fatigue effects on anthocyanins of mulberry juice purification (MJP) and Mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem Toxicol. 2013;59:1-7. https://doi.org/10.1016/j.fct.2013.05.023
- Kang S-M, Heo S-J, Kim K-N, Lee S-H, Jeon Y-J. Isolation and identification of new compound, 2, 7"-phloroglucinol-6, 6'-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J Funct Foods. 2012;4:158-66. https://doi.org/10.1016/j.jff.2011.10.001
- Kang N, Ko S-C, Samarakoon K, Kim E-A, Kang M-C, Lee S-C, Kim J, Kim Y-T, Kim J-S, Kim H. Purification of antioxidative peptide from peptic hydrolysates of Mideodeok (Styela clava) flesh tissue. Food Sci Biotechnol. 2013;22:541-7. https://doi.org/10.1007/s10068-013-0112-y
- Kim H-G, Cho J-H, Yoo S-R, Lee J-S, Han J-M, Lee N-H, Ahn Y-C, Son C-G. Antifatigue effects of Panax ginseng CA Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One. 2013;8:e61271. https://doi.org/10.1371/journal.pone.0061271
- Kim S, Kim J, Lee Y, Seo MK, Sung DJ. Anti-fatigue effects of acute red ginseng intake in recovery from repetitive anaerobic exercise. Iran J Public Health. 2016;45:387-9.
- Kumaravel K, Ravichandran S, Balasubramanian T, Siva Subramanian K, Bilal A. Antimicrobial effect of five seahorse species from Indian coast. Br J Pharmacol Toxicol. 2010;1:62-6.
- Kumaravel K, Ravichandran S, Balasubramanian T, Sonneschein L. Seahorses-a source of traditional medicine. Nat Prod Res. 2012;26:2330-4. https://doi.org/10.1080/14786419.2012.662650
- Nam S-Y, Kim H-M, Jeong H-J. Anti-fatigue effect by active dipeptides of fermented porcine placenta through inhibiting the inflammatory and oxidative reactions. Biomed Pharmacother. 2016;84:51-9. https://doi.org/10.1016/j.biopha.2016.09.012
- Nozawa Y, Yamada K, Okabe Y, Ishizaki T, Kuroda M. The anti-fatigue effects of the low-molecular-weight fraction of bonito extract in mice. Biol Pharm Bull. 2009;32:468-74. https://doi.org/10.1248/bpb.32.468
- Perera N, Godahewa G, Lee J. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein. Fish Shellfish Immunol. 2016;57:386-99. https://doi.org/10.1016/j.fsi.2016.08.052
- Qian Z-J, Kang K-H, Kim S-K. Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus kuda Bleeler. Biotechnol Bioprocess Eng. 2012;17:1031-40. https://doi.org/10.1007/s12257-012-0115-1
- Segade A, Robaina L, Otero-Ferrer F, Garcia Romero J, Molina Dominguez L. Effects of the diet on seahorse (Hippocampus hippocampus) growth, body colour and biochemical composition. Aquacult Nutr. 2015;21:807-13. https://doi.org/10.1111/anu.12202
- Singh T, Singh K. Mitochondrial dysfunction and chronic fatigue syndromes: issues in clinical care (modified version). IOSR J Dental Med Sci. 2014;13:30-3.
- Swamy M, Naveen S, Singsit D, Naika M, Khanum F. Anti-fatigue effects of polyphenols extracted from pomegranate peel. Int J Integr Biol. 2011;11:69-72.
- Tang W, Zhang Y, Gao J, Ding X, Gao S. The anti-fatigue effect of 20 (R)-ginsenoside Rg3 in mice by intranasally administration. Biol Pharm Bull. 2008;31:2024-7. https://doi.org/10.1248/bpb.31.2024
- Wu R-E, Huang W-C, Liao C-C, Chang Y-K, Kan N-W, Huang C-C. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 2013;18:4689-702. https://doi.org/10.3390/molecules18044689
- You L, Zhao M, Regenstein J-M, Ren J. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chem. 2011;124:188-94. https://doi.org/10.1016/j.foodchem.2010.06.007
- Yu B, Lu Z-X, Bie X-M, Lu F-X, Huang X-Q. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. Eur Food Res Technol. 2008;226:415-21. https://doi.org/10.1007/s00217-006-0552-1
- Zhang Y, Yao X, Bao B, Zhang Y. Anti-fatigue activity of a triterpenoid-rich extract from Chinese bamboo shavings (Caulis bamfusae in taeniam). Phytother Res. 2006;20:872-6. https://doi.org/10.1002/ptr.1965
Cited by
- Effects of sea horse (Hippocampus abdominalis)-derived protein hydrolysate on skeletal muscle development vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.058
- Physical and functional properties of tunicate (Styela clava) hydrolysate obtained from pressurized hydrothermal process vol.20, pp.7, 2017, https://doi.org/10.1186/s41240-017-0060-1
- Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pat vol.16, pp.7, 2018, https://doi.org/10.3390/md16070239
- Effects of Strontium-Hydroxyapatite Mediated Active Compounds from Hippocampus Kuda Bleeler (HKB) on Osteogenesis vol.9, pp.2, 2017, https://doi.org/10.3390/coatings9020141
- 식용 빅벨리 해마(Hippocampus abdominalis) 유래 단백질 가수분해물의 항산화와 항고혈압 효능 vol.52, pp.2, 2017, https://doi.org/10.5657/kfas.2019.0127
- Antiproliferative and apoptosis-inducing potential of 3β-hydroxy-Δ5-steroidal congeners purified from the soft coral Dendronephthya putteri vol.37, pp.4, 2017, https://doi.org/10.1007/s00343-019-8193-y
- In Vitro and In Vivo Antioxidant Activities of Polysaccharides Isolated from Celluclast-Assisted Extract of an Edible Brown Seaweed, Sargassum fulvellum vol.8, pp.10, 2019, https://doi.org/10.3390/antiox8100493
- Ethanolic Extract of Hippocampus abdominalis Exerts Anti-Melanogenic Effects in B16F10 Melanoma Cells and Zebrafish Larvae by Activating the ERK Signaling Pathway vol.7, pp.1, 2017, https://doi.org/10.3390/cosmetics7010001
- Identification, molecular characterization, expression analysis and wound-healing ability of multifunctional calreticulin from big-belly seahorse Hippocampus abdominalis vol.106, pp.None, 2020, https://doi.org/10.1016/j.fsi.2020.08.014
- Anti-Fatigue Activity of a Mixture of Stauntonia hexaphylla (Thunb.) Decaisne and Vaccinium bracteatum Thunb. Fruit Extract vol.25, pp.4, 2020, https://doi.org/10.3746/pnf.2020.25.4.380
- Advances in the Global Distribution, Chemical Constituents, and Pharmacology of Hippocampus, a Traditional Marine Chinese Medicine vol.8, pp.None, 2017, https://doi.org/10.3389/fmars.2021.774927
- Anti-fatigue liquid formulations made from fruits vol.44, pp.no.pb, 2017, https://doi.org/10.1016/j.fbio.2021.101439
- Ishige okamurae and diphloroethohydoxycarmalol inhibit palmitic acid-impaired skeletal myogenesis and improve muscle regenerative potential vol.87, pp.None, 2021, https://doi.org/10.1016/j.jff.2021.104832