DOI QR코드

DOI QR Code

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis

유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가

  • Lee, Sangmok (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Young-Joo (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 이상목 (울산과학기술원 도시환경공학부) ;
  • 이영주 (울산과학기술원 도시환경공학부)
  • Received : 2017.03.09
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

액체저장탱크는 화학물질을 다루는 산업단지의 주요한 구조물로서, 지진으로 인한 구조물의 손상은 화학물질의 유출, 화재, 폭발 등의 추가적인 피해를 야기한다. 따라서 액체저장탱크의 지진 취약성을 사전에 효율적으로 평가하고, 지진에 대비하는 일이 필수적이라고 할 수 있다. 지진으로 인해 진동하는 액체저장탱크는 액체-구조물의 상호작용으로 탱크 벽체에 유동압력이 작용하며, 이는 탱크의 응력을 증가시키고 구조적 손상을 일으키는 원인이 될 수 있다. 한편, 구조물의 지진 취약성은 여러 불확실성 요인들을 고려하여 정해진 한계상태에 대한 파괴확률을 산정함으로써 평가하게 되는데, 보다 정확한 액체저장탱크 지진 취약도 평가를 위해서는 신뢰성 해석 과정에서 정교한 유한요소 해석이 요구된다. 따라서 본 연구에서는 최근에 신뢰성 해석 소프트웨어와 유한요소 해석 소프트웨어를 서로 연동시켜 개발된 FERUM-ABAQUS를 활용한 유한요소 신뢰성 해석을 통해 액체저장탱크의 파괴확률을 계산하였다. 이러한 유한요소 신뢰성 해석 기법은 두 소프트웨어 간의 자동적인 데이터 교환이 가능하여 보다 효율적으로 구조물의 지진 취약성을 평가할 수 있으며, 이를 통해 얻은 파괴확률 결과를 바탕으로 지진 강도에 따른 액체저장탱크의 지진 취약도 곡선을 성공적으로 도출하였다.

Keywords

References

  1. G.W. Housner, "The dynamic behavior of water tanks." Bulletin of the seismological society of America, vol. 53, no. 2, pp. 381-387, 1963
  2. A.S. Veletsos, "Seismic effects in flexible liquid storage tanks." Proceedings of the 5th world conference on earthquake engineering, vol. 1, 1974.
  3. D.-S. Moon, Y.-J. Lee, and Sangmok Lee, "Seismic vulnerability assessment of RC frame structures using 3D analytical models", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 9, pp. 724-731, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.9.724
  4. O.S. Kwon and A.S. Elnashai, "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Engineering Structures, vol. 28, no. 2, pp. 289-303, 2006. DOI: https://doi.org/10.1016/j.engstruct.2005.07.010
  5. I. Iervolino, G. Fabbrocino and G. Manfredi, "Seismic vulnerability of standardised industrial components: application to oil storage tanks", In Proc. 13th World Conference on Earthquake Engineering, 2004.
  6. M. S. Razzaghi and S. Eshghi, "Probabilistic Seismic Safety Evaluation of Precode Cylindrical Oil Tanks", Journal of Performance of Constructed Facilities, vol. 29, no. 6, 2014.
  7. J. Lee, Y.-J. Lee, H. Kim, S.-H. Sim and J.-M. Kim, "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges." Smart Structures and Systems, vol. 17, no. 1, pp. 149-165, 2016. DOI: https://doi.org/10.12989/sss.2016.17.1.149
  8. H. Kim and S.-H. Sim, "Flood fragility analysis of bridge piers in consideration of debris impacts", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 5, pp. 325-331, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.5.325
  9. A. Der Kiureghian. Fisrt- and second-order reliability methods. chap.14, CRC press, Boca Raton, FL, USA, 2005.
  10. S. Jeong and A.S. Elnashai, "Probabilistic fragility analysis parameterized by fundamental response quantities", Engineering Structures, vol. 29, pp. 1238-1251, 2007. DOI: https://doi.org/10.1016/j.engstruct.2006.06.026
  11. Y.J. Lee, J. Song and E.J. Tuegel, "Finite element system reliability analysis of a wing torque box." Proc. 10th AIAA Nondeterministic Approaches Conference, 2008. DOI: https://doi.org/10.2514/6.2008-1718
  12. W.-H. Kang, Y.-J. Lee, J. Song and B. Gencturk, "Further development of matrix-based system reliability method and applications to structural systems." Structure and Infrastructure Engineering, vol. 8, no. 5, pp. 441-457, 2012. DOI: https://doi.org/10.1080/15732479.2010.539060
  13. A. Di Carluccio, G. Fabbrocino and G. Manfredi, "FEM seismic analysis of steel tanks for oil storage in industrial facilities." Proceedings of the 14th World Conference on Earthquake Engineering, 2008.
  14. T.J. Zhu, A.C. Heidebrecht and W.K. Tso, "Effect of peak ground acceleration to velocity ratio on ductility demand of inelastic systems." Earthquake engineering & structural dynamics, vol. 16, no. 1, pp. 63-79, 1988. DOI: https://doi.org/10.1002/eqe.4290160106
  15. JCSS. Probabilistic Model Code, The Joint Committee on Structural Safety, 2001, Available From: http://www.jcss.byg.dtu.dk/. (accessed Oct., 2016)