DOI QR코드

DOI QR Code

A Study on Leaching and Solvent Extraction for the Recovery of Copper Ore for Small-Scale Mining in Tanzania

탄자니아의 소규모 광산에서 구리광석 정제를 위한 침출 및 용매 추출에 관한 연구

  • Soh, Soon-Young (Department of Cosmetic Science, Chungwoon University) ;
  • Chun, Yong-Jin (Department of Integrated Materials Engineering, Chungwoon University) ;
  • Itika, Ambrose J.M. (Department of Chemical and Mining Engineering, University of Dar es Salaam)
  • Received : 2017.01.04
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

Tanzania has abundant copper deposits, but copper-metal extraction remains low there, owing to the lack of suitable copper recovery processes and insufficient funds for developing mining technologies. Accordingly, leaching and solvent extraction methods for the extraction of copper from copper ore were studied with a particular emphasis on developing a simple processing method for small-scale copper mining. Chrysocolla ore was used as the copper-bearing mineral and sulfuric acid was used as the leaching reagent. A maximum copper recovery of 95.1% was obtained when the particles in the sample were smaller than $53{\mu}m$, the concentration of 98%(w/w) sulfuric acid in the leaching solution was 5.0 g/L and the stirring rate was between 60 and 80 rpm. The highest selectivity of $Cu^2+$ in the solvent extraction was obtained using 15% LIX-70 in kerosene. In the pH range from 0.5 to 3.0, the efficiency of $Cu^2+$ extraction increased with increasing pH. However, at pH values higher than 3.0, other metal ions were extracted into the organic phase more readily than $Cu^2+$. The highest solvent extraction rate obtained was 96.5% at pH values of 2.0 and 3.0 using 15% LIX-70.

탄자니아에는 풍부한 구리 매장량이 있으나, 적절한 구리 회수 공정의 결핍과 광산 기술 개발을 위한 자금 부족으로 구리 금속의 추출량은 여전히 낮은 상태이다. 이에 따라 소규모 구리 채굴을 위한 간단한 처리공정 개발에 중점을 두어 구리광석에서 구리를 추출하기 위한 침출법과 용매 추출법을 연구하였다. 사용된 구리광석은 규공작석이었으며, 침출 시약으로 황산을 사용하였다. 침출 공정에서 시료의 입경이 $53{\mu}m$보다 작고, 98%(w/w) 황산 농도가 5.0 g/L, 교반 속도가 60에서 80 rpm일 때 최대 구리 회수율이 95.1% 이었다. 용매 추출에서 구리 2가 양이온의 최고의 선택 비율은 등유에 녹인 15 % LIX-70을 이용하여 얻어졌다. pH가 0.5에서 3.0까지, 구리 2가 양이온 추출 효율은 pH가 증가함에 따라 증가했다. 그러나 3.0이상의 pH에서는 다른 금속 이온이 구리 2가 양이온보다 유기물층으로 더 많이 추출되었다. 최고의 용매 추출율은 15% LIX-70를 사용하여 각각 pH 2.0 및 3.0에서 96.5% 이었다.

Keywords

References

  1. Ayman Elshkaki, T.E. Graedel, Luca Ciacci, and Barbara K. Reck, "Copper demand, supply, and associated energy use to 2050", Global Environmental Change, vol. 39, pp. 305-315, July, 2016. DOI: https://doi.org/10.1016/j.gloenvcha.2016.06.006
  2. R. R. Moskalyk, and A. M. Alfantazi, "Review of copper pyrometallurgical practice : today and tomorrow", Minerals Engineering, vol. 16, no. 10, pp. 893-919, Oct. 2003. DOI: https://doi.org/10.1016/j.mineng.2003.08.002
  3. D. Villarroel, "Process for refining copper in solid state", Minerals Engineering, vol. 12, no. 4, pp. 405-414, April, 1999. DOI: https://doi.org/10.1016/S0892-6875(99)00020-5
  4. M. E. Schlesinger, M. J. King, K. C. Sole, and W. G. Davenport, Extractive metallurgy of copper, 5th ed., pp. 281-322, Oxford, Elsevier, 2011. DOI: https://doi.org/10.1016/B978-0-08-096789-9.10015-0
  5. Yan Xu, Jinhui Li, and Lili Liu, "Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from Waste Printed Circuit Boards", Procedia Environmental Sciences, vol. 31, pp. 162-170, 2016. DOI: https://doi.org/10.1016/j.proenv.2016.02.022
  6. H. R. Watling, "Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options", Hydrometallurgy, vol. 146, pp. 96-110, May, 2014. DOI: https://doi.org/10.1016/j.hydromet.2014.03.013
  7. Yahui Zhang, Qi Liu, and Li Li, "Removal of iron from sythetic copper leach solution using a hydroxy-oxime chelating resin", Hydrometallurgy, vol. 164, pp. 154-158, Sep. 2016. DOI: https://doi.org/10.1016/j.hydromet.2016.06.004
  8. K. C. Sole, A. M. Feather, and P. M. Cole, "Solvent extraction in Southern Africa : An update of some recent hydrometallurgical developments", Hydrometallurgy, vol. 78, no. 1-2, pp. 52-78, July 2005. DOI: https://doi.org/10.1016/j.hydromet.2004.11.012
  9. A. G. Chmielewski, Y. S. Urbanski, and W. Migdal, "Separation technologies for metal recovery from industrial waste", Hydrometallurgy, vol. 45, no. 3, pp. 333-344, July, 1997. DOI: https://doi.org/10.1016/S0304-386X(96)00090-4
  10. S. Agarwel, A. E. Ferreira, S. M. C. Santos, M. T. A. Reis, M. R. C. Ismael, M. N. N. Correia, and J. M. R. Carvalho, "Separation and recovery of copper from zinc leach liquor by solvent extraction using Acorga M5640", International. Journal of Mineral Processing, vol. 97, no. 1-4, pp. 85-91, Nov. 2010. DOI: https://doi.org/10.1016/j.minpro.2010.08.009
  11. S. Mishra, and N. Devi, "Extraction of copper(II) from hydrochloric acid solution by Cyanex 921", Hydrometallurgy, vol. 107, no. 1-2, pp. 29-33, Apr. 2011. DOI: https://doi.org/10.1016/j.hydromet.2010.12.016
  12. C. M. Moreno, J. R. Perez-Correa, and A.Otero, "Dynamic modeling of copper solvent extraction mixer-settler units", Minerals Engineering, vol. 22, no. 15, pp. 1350-1358, Dec. 2009. DOI: https://doi.org/10.1016/j.mineng.2009.09.003
  13. K. C. Sole, and J. B. Hiskey, "Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301", Hydrometallurgy, vol. 37, no. 2, pp. 129-147, Feb. 1995. DOI: https://doi.org/10.1016/0304-386X(94)00023-V
  14. D. S. Flett, "Solvent extraction in hydrometallurgy : the role of organophosphorus extractants", Journal of Organometallic Chemistry, vol. 690, no. 10, pp. 2426-2438, May, 2005. DOI: https://doi.org/10.1016/j.jorganchem.2004.11.037
  15. L. R. Lemos, I. J. B. Santos, G. D. Rodrigues, L. H. M. Silva, and M. C. H. Silva, "Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system", Journal of Hazardous Materials, vol. 237-238, pp. 209-214, Oct. 2012. DOI: https://doi.org/10.1016/j.jhazmat.2012.08.028
  16. Baba, Yoshinari, Iwakuma, Minako, and Nagami Hideto, "Extraction Mechanism for Copper(II) with 2-Hydroxy-4-n-octyloxybenzophenone Oxime", Industrial & Engineering Chemistry Research. vol. 41, no. 23, pp. 5835-5841, 2002. Available from: https://en.wikipedia.org/wiki/ Liquid-liquidextraction(accessed Nov. 1, 2016) https://doi.org/10.1021/ie0106736
  17. R. L. Atwood, and J. D. Miller, "Structure and composition of commercial copper chelate extractant", AIME Transactions, vol. 254, pp. 319-323, 1973.