DOI QR코드

DOI QR Code

Effects of Fisheries Technological Innovation on Growth per Capita across OECD Countries

수산부문 기술혁신이 OECD 회원국의 성장률에 미친 효과

  • Lee, Yoonsuk (Fisheries Policy Research Division, Korea Maritime Institute) ;
  • Chang, Jae Bong (Department of Food Marketing and Safety, Konkuk University)
  • 이윤숙 (한국해양수산개발원 수산연구본부) ;
  • 장재봉 (건국대학교 식품유통공학과)
  • Received : 2017.01.09
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

The environmental problems affecting marine resources and slow growth in the fisheries industry is causing many countries to look for alternative inputs that can boost the fisheries sector. This study focuses on the effects of technological innovation in the fisheries industry on the gross domestic product (GDP) per capita across Organization for Economic Cooperation and Development (OECD) countries. Using a panel dataset, this study attempts to estimate the different effects of technological innovations in the fisheries industry from country to country using the differences-in-differences (DiD) method. After the DiD method, the Granger causality test is applied to determine the interactive relations between economic growth and the selected variables associated with technological innovation in the fisheries industry, such as government spending on fisheries R&D, the number of patents in fisheries, and employment. The results obtained from the DiD estimation show that government spending on fisheries R&D, fisheries technology development, and fisheries employment positively influences the GDP per capita across OECD counties. From the causality test, we found different bi-directional causal relationships between the GDP per capita and (spending) on fisheries technology development across countries.

최근 해양자원에 대한 환경적 제약에 대한 관심 증대와 다른 산업에 비해 상대적으로 뒤쳐진 수산부문의 성장으로 인해 많은 국가들은 수산부문의 다양한 성장 방안을 고려하고 추진하고 있다. 본 연구는 경제협력개발기구(OECD) 회원국들의 패널자료를 이용하여 수산부문의 기술혁신이 회원국 국민 1인당 국내총생산(GDP)에 미치는 영향을 분석하였다. 이를 위해 이중차분모형(DiD)과 Granger 인과성 검증방법을 이용하여 수산부문 연구개발(R&D) 지출, 특허, 고용 등의 수산부문 기술혁신과 경제 성장간의 상호 연관성과 파급효과를 분석하였다. 패널모형 분석에서는 24개 OECD 회원국들 가운데 수산부문의 기술개발 분야의 선도국가들인 노르웨이, 독일, 덴마크, 미국, 캐나다, 한국을 대상으로, 인과성 검증은 자료의 제약으로 OECD 회원국들 중에서 노르웨이, 미국, 캐나다, 한국만을 대상으로 국한하였다. 분석 결과, 수산부문에 대한 정부의 R&D 지출, 기술개발, 고용이 확대될수록 OECD 회원국들의 1인당 GDP는 증가하는 것으로 나타났다. 그러나, 이들 변수들 간의 상호연관성은 존재하지 않는 것으로 나타났다. 인과성 검증 결과, GDP와 수산부문 기술발전 사이의 인과성은 국가마다 상당한 차이를 보이는 것으로 나타났다.

Keywords

References

  1. Jeffrey, D. S., McArthur, J. W., Technological Advance and Long-Term Economic Growth in Asia, Bai, C-E., Yuen, C-W. Eds., MIT Press, Cambridge, pp. 157-185, 2002.
  2. Jones. C. I., Williams, J.C. "Too much of a Good Thing: The Economics of Investment in R&D," Journal of Economic Growth 5, pp. 65-85, 2000. DOI: https://doi.org/10.1023/A:1009826304308
  3. Basu, S., Fernald, J. G., Shapiro, M.D. Productivity Growth in the 1990s: Technology, Utilization, or Adjustment? Carnegie-Rochester Conference Series on Public Policy, pp. 117-165, Jan. 2001. DOI: https://doi.org/10.1016/S0167-2231(01)00054-9
  4. Romer, P. M., "Increasing Returns and Long-Run Growth," Journal of Political Economy 94, pp. 1002-1037, 1986. DOI: https://doi.org/10.1086/261420
  5. Ulku, H. R&D, Innovation, and Economic Growth: An Empirical Analysis. IMF Working paper, 2004.
  6. IRI. 2016 Global R&D Funding Forecast, ABM Science Group 11, New Jersey, 2015.
  7. Blackburn, K., Hung, V.T.Y., Pozzolo, A.F. "Research, Development, and Human Capital Accumulation," Journal of Monetary Economics 22, pp. 189-206, 2000. DOI: https://doi.org/10.1016/s0164-0704(00)00128-2
  8. Akcali, B. Y., Sismanoglu, E., "Innovation and the Effect of Research and Development (R&D) Expenditure on Growth in Some Developing and Developed Countries," Social and Behavioral Science 195, pp. 768-775, 2015. DOI: https://doi.org/10.1016/j.sbspro.2015.06.474
  9. Wang, D. H-M., Yu, T.H-K., Liu, H-Q., "Heterogeneous Effect of High-Tech Industrial R&D Spending on Economic Growth," Journal of Business Research 66, pp. 1990-1993, 2013. DOI: https://doi.org/10.1016/j.jbusres.2013.02.023
  10. Greenhalgh, C., Longland, M., Bosworth, D. "Technological Activity and Employment in a Panel of UK Firms," Scottish Journal of Political Economy 48, pp. 260-282, 2001. DOI: https://doi.org/10.1111/1467-9485.00198
  11. Standal, D. "Nut and Bolts in Fishereis Management-a Technological Approach to Sustainable Fisheries?" Marine Policy 29, pp. 255-263, 2005. DOI: https://doi.org/10.1016/j.marpol.2004.04.004
  12. Singh, R. and S. Raja. "Convergence in Information and Communication Technology: Strategic and Regulatory Considerations," The World Bank, Washington, DC, 2010. DOI: https://doi.org/10.1596/978-0-8213-8169-4
  13. Ritzau, E. O., Paul, M., Henrik, G., Adriaan, D.R. "Technological Development and Fisheries Management," Reviews in Fisheries Science & Aquaculture 22, pp. 156-174, 2014. DOI: https://doi.org/10.1080/23308249.2014.899557
  14. Burnell, G., Allan, G. New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management, Elsevier, Amsterdam, 2009. DOI: https://doi.org/10.1533/9781845696474
  15. Goolsbee, A. Does Government R&D Policy mainly Benefit Scientists and Engineers? NBER Working Paper Series. 1998.
  16. Leonard, S. J. Technological Change and the Extent of Frictional and Structural Unemployment. Working paper series, Institute for Research on Labor and Employment, UC Berkeley, 1986.
  17. Guloglu, B., Tekin, R. B. A, "Panel Causality Analysis of the Relationship among Research and Development, Innovation, and Economic Growth in High-Income OECD Countries," Eurasian Economic Review 2, pp. 32-47, 2012.
  18. Hu, G. A., "Innovation and Economic Growth in East Asia: An Overview," Asian Economic Policy Review 10, pp. 19-37, 2015. DOI: https://doi.org/10.1111/aepr.12078
  19. Parham, Dean "Empirical Analysis of the Effects of R&D on Productivity: Implications for Productivity Measurement?" OECD Workshop on Productivity Measurement and Analysis, Bern, Switzerland 16-18 October, 2006.
  20. Card, D., Krueger, B. A., "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," The American Economic Review 84, pp. 772-793, 1994.
  21. Author, H.D. "Outsourcing at Will: Unjust Dismissal Doctrine and the Growth of Temporary Help Employment," Journal of Labor Economics 21, pp. 1-42, 2009.
  22. Lechner, M., Fodriguez, N., Fernandez, D. Differencein- Differences Estimation by FE and OLS when There is Panel Non-Response. IZA Discussion Papers No. 9490, 2015.
  23. OECD report, Measuring Environmental Innovation Using Patent Data: Policy Relevance. http://www.oecd.org/officialdocuments/publicdisplaydocu mentpdf/?cote=ENV/EPOC/WPEI(2014)6/FINAL&docL anguage=En 2015; Accessed 2016.7.21.
  24. Greene, H. William. Econometric Analysis Fifth ed; Prentice Hall, New Jersey. 2003.
  25. Wansbeek, T., Kapteyn, A. "Estimation of the Error-Component Model with Incomplete Panels," Journal of Econometrics 41, pp. 341-361, 1989. DOI: https://doi.org/10.1016/0304-4076(89)90066-3
  26. Moulton, R. B., "Diagnostics for Group Effects in Regression Analysis," Journal of Business and Economic Statistics 2, pp. 275-282, 1987. DOI: https://doi.org/10.2307/1391908
  27. Guilkey, D. K. Salemi, M. K., "Small Sample Properties of Three Tests for Granger-Causal Ordering in a Bivariate Stochastic System," The Review of Economics and Statistics 64, pp. 558-680, 1982. DOI: https://doi.org/10.2307/1923951