DOI QR코드

DOI QR Code

Evaluation of Running Performance of the Composite Bogie under Different Side Beam Stiffness

사이드 빔 강성에 따른 복합소재 대차의 주행성능 평가

  • Kim, Jung-Seok (Advanced Materials Research Team, Korea Railroad Research Institute)
  • 김정석 (한국철도기술연구원 첨단소재연구팀)
  • Received : 2017.03.09
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

In this study, a running performance evaluation and roller rig test was conducted to evaluate the applicability of a composite bogie frame, which has the role of the primary suspension. The composite bogie frame was made of a GEP224 glass/epoxy prepreg. Vehicle dynamic analysis was carried out on the composite bogie with three different kinds of side beam thicknesses (50 mm, 80 mm, and 150 mm). From the results, the composite bogie with a side beam thickness of 80 mm satisfied all the dynamic design requirements. Although the composite bogie with the side beam thickness of 50mm also met the design requirements, its critical speed was just a 2% margin to the requirement. In contrast, the model of the side beam thickness of 150mm did not meet the ride comfort. In addition, a composite bogie frame with the side beam thickness of 80 mm was fabricated and installed on a complete bogie. Moreover, the roller rig test using the fully equipped bogie was performed to evaluate the critical speed. During the test, the lateral excitation was imposed on the wheelsets to realize the rail irregularity. There was no divergence of the lateral displacement of the wheelsets while increasing the speed. The measured critical speed was similar to the predicted result.

본 연구에서는 사이드 빔이 1차 현가장치 역할을 수행하도록 설계된 복합소재 대차프레임의 적용성 검토를 위해 동특성 해석과 성능평가를 수행하였다. 대차프레임에 적용된 소재는 GEP224 유리섬유/에폭시 프리프레그이다. 성능검증을 위해 복합소재 대차프레임의 사이드 빔의 두께를 50mm, 80mm, 150mm로 변화시키면서 강성을 조절한 모델에 대해서 주행성능을 해석적으로 평가하였다. 주행성능평가에서 사이드 빔의 두께가 80mm인 모델은 모든 성능조건을 만족하였고, 사이드 빔 두께가 50mm인 경우 역시 모든 성능조건을 만족하지만 임계속도가 요구조건에 2%정도의 여유 밖에 없어 적합하지 않았다. 사이드 빔 두께가 150mm인 모델의 경우 공차시 수직방향 승차감 지수가 기준을 만족하지 못해 부적합한 것을 확인하였다. 또한, 사이드 빔의 두께가 80mm인 모델을 제작하여 대차에 설치하고, 주행시험대 시험을 통해 임계속도를 시험적으로 평가하였다. 주행시험대 시험에서는 휠세트에 횡방향 가진을 부과하고, 목표속도까지 증속과정에서 횡방향 가진에 의한 휠세트 횡변위의 발산현상은 발생하지 않았다. 또한, 횡방향 가진이 제거된 이후 휠세트의 횡변위 역시 수렴하여 최대 임계속도는 차량 동역학 해석에서 예측된 최대 임계속도와 유사함을 확인 할 수 있었다.

Keywords

References

  1. I. K. Kim, J. S. Kim, W. G. Lee, 2014, "Investigation of Vehicle Dynamic Behavior of Composite Bogie Under Different Rubber Bushing Stiffness Values," Transactions of the Korean Society of Mechanical Engineers A, vol. 39, no. 3, pp. 303-309, 2015. DOI: https://doi.org/10.3795/KSME-A.2015.39.3.303
  2. Kawaski Heavy Industry, efWING_Brochure, 2015.
  3. W. Geuenich, C. Guenther, R. Leo, "Dynamics of Fiber Composite Bogies with Creep-controlled Wheelsets," Vehicle System Dynamics, vol. 12, no. 1-3, pp. 134-140, 1983. DOI: https://doi.org/10.1080/00423118308968739
  4. C. Guenther, R. Leo, P. Wackerle, "New Technologies for Rail Vehicle Bogies and Car Body Substructures," Les Editions de Physique, pp. 89-95, 1986.
  5. R. Leo, H. P. Lang, "Fiber-composite Bogies on Test," Railway Gazette International, pp. 632-633, 1986.
  6. L. Maurin, J. Boussoir, S. Rougeault, M. Bugaud, P. Ferdinand, "FBG-based Smart Composite Bogies for Railway Applications," Optical Fiber Sensors Conference Technical Digest, 15th, IEEE, pp. 91-94, 2002. DOI: https://doi.org/10.1109/ofs.2002.1000509
  7. H. Jining, J. George, "A Novel Bogie Design Made of Glass Fibre Reinforced Plastic," Materials & Design, vol. 37, pp. 1-7, 2012. DOI: https://doi.org/10.1016/j.matdes.2011.12.026
  8. S. C. Zhi, Z. Youqun, W. Lu, "Tri-objective Co-evolutionary Algorithm and Application of Suspension Parameter Design Based on Lizard Behavoir Bionics," Journal of Mechanical Science and Technology, vol. 28, no. 12, pp. 4857-4867, 2014. DOI: https://doi.org/10.1007/s12206-014-1106-2
  9. W. S. Yoo, E. J. Haug, "Dynamics of Flexible Mechanical Systems using Vibration and Static Correction Modes," Journal of Mech. Trans. Auto. Des, vol. 108, no. 3, pp. 315-322, 1986. DOI: https://doi.org/10.1115/1.3258733
  10. J. T. Spanos, W. S. Tsuha, "Selection of Component Modes for Flexible Multibody Simulation," Journal of Guidance, vol.14, no.2, pp. 278-286, 1991. DOI: https://doi.org/10.2514/3.20638
  11. S. S. Shin, W. S. Yoo, J. Tang, "Effect of Mode Selection, Scaling, and Orthogonalization on the Dynamic Analysis of Flexible Multibody Systems," Mechanics of Structures and machines, vol. 21, no. 4, pp. 507-527, 1993. DOI: https://doi.org/10.1080/08905459308905199
  12. S. S. Kim, E. J. Haug, "Selection of Deformation Modes for Flexible Multibody Dynamics," Mechanics of Structures and machines, vol. 18, no. 4, pp. 565-586, 1990. DOI: https://doi.org/10.1080/08905459008915685
  13. U. I. D. C. Code, "513R. Guideline for evaluation passenger comfort in relation to vibration in railway vehicles," International Union of Railways, 1994.
  14. U. I. D. C. Code, "518 OR Testing and approval of railway vehicles from the point of view of their dynamic behavior - Safety - Track fatigue - Running behavior," International Union of Railways, 2009.