DOI QR코드

DOI QR Code

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells

코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Park, Taeyeul (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 김광배 (서울시립대학교 신소재공학과) ;
  • 박태열 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2017.01.04
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

염료감응형 태양전지 촉매층으로 CoSi의 신뢰성을 확인하기 위해 전자빔증착기를 이용하여 100 nm-Co/300 nm-Si/quartz의 적층구조를 형성하고, $700^{\circ}C$-60분의 진공열처리하여 약 350 nm-CoSi를 형성하였다. 이때 잔류 Co를 제거하기 위해 $80^{\circ}C$-30%의 황산처리를 진행하였다. 또한 비교를 위해 100 nm-Pt/glass 상대전극을 준비하였다. CoSi 상대전극이 채용된 DSSC 소자의 신뢰성을 확인하기 위해 $80^{\circ}C$ 온도조건에서 0, 168, 336, 504, 672, 840시간동안 유지하였다. 이들을 채용한 DSSC 소자의 광전기적 특성을 분석하기 위해 solar simulator와 potentiostat을 이용하였다. CoSi 상대전극의 촉매활성도, 미세구조, 그리고 조성 분석을 확인하기 위해 CV, FE-SEM, FIB-SEM, EDS를 이용하여 분석하였다. 시간에 따른 에너지변환효율 결과, Pt와 CoSi 상대전극 모두 에너지변환효율이 504시간까지는 유지되다가 672시간 경과 후 처음의 50%로 감소하는 특성을 보였다. 촉매활성도 분석 결과, 시간이 지남에 따라 Pt와 CoSi 상대전극 모두 촉매활성도가 감소하여 각각 64%, 57%의 촉매활성도를 보였다. 미세구조 분석 결과, CoSi층은 전해질에 대한 안정성은 우수하였으나, 하부 쿼츠 기판과 CoSi층의 접촉면에 스트레스가 집중되어 국부적으로 크렉이 형성되며, 궁극적으로 ${\mu}m$급의 박리현상을 확인하였다. 따라서 CoSi 상대전극은 실리사이드화 되는 과정에서 잔류응력 때문에 열화가 일어나므로 신뢰성의 확보를 위해서는 이러한 잔류응력의 대책이 필요하였다.

Keywords

References

  1. B. O'Regan, M. Gratzel, "A low-cost high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films", Nature, vol. 353, pp. 737-740, 1991. DOI: https://doi.org/10.1038/353737a0
  2. Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang, Y. Deng, "Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell", Electrochem. Commun., vol. 11, pp. 1768-1771, 2009. DOI: https://doi.org/10.1016/j.elecom.2009.07.018
  3. E. Olsen, G. Hagen and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing $LiI/I_2$", Sol. Energ. Mat. Sol. C., vol. 63, pp. 267-273, 2000. DOI: https://doi.org/10.1016/S0927-0248(00)00033-7
  4. D. Bari, N. Wrachien, R. Tagliaferro, S. Penna, T. M. Brown, A. Reale, A. Di Carlo, G. Meneghesso, A. Cester, "Thermal stress effects on Dye-sensitized Solar cells", Microelectronics Reliability, vol. 51, pp. 1762-1766, 2011. https://doi.org/10.1016/j.microrel.2011.07.061
  5. Y. Noh, K. Yoo, J. Kim, O. Song, M. J. Ko, "Iridum catalyst based counter electrodes for dye-sensitized solar cells", Curr. Appl. Phys., vol. 13, pp. 1620-1624, 2013. DOI: https://doi.org/10.1016/j.cap.2013.06.007
  6. H. Takada, Y. Obana, R. Sasaki, M. kuribayashi, M. Kanno, C. Zhu, T. Bessho, Y. Takagi, K. Hinokuma, K. Noda, "Improved durability of dye-sensitized solar cell with $H_2$-reduced carbon counter electrode", J. Power Sources, vol. 274, pp. 1276-1282, 2015. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.148
  7. B. Yoo, M. K. Lim, K. Kim, "Application of Pt sputter-deposited counter electrodes based on micro-patterned ITO glass to quasi-solid state dye-sensitized solar cells", Curr. Appl. Phys., vol. 12, pp. 1302-1306, 2012. DOI: https://doi.org/10.1016/j.cap.2012.03.018
  8. K. Kim, Y. Noh, O. Song, "Catalytic Properties of the Cobalt Silicides for a Dye-Sensitized Solar Cell", Korean J. Mater. Res., vol. 26, no. 8, pp. 401-405, 2016. DOI: https://doi.org/10.3740/MRSK.2016.26.8.401
  9. K. Kim, Y. Noh, M. Choi, O. Song, "Properties of the Counter Electrode with Nickel Silicides in a Dye Sensitized Solar Cell", Korean J. Met. Mater., vol. 54, no. 8, pp. 615-620, 2016. DOI: https://doi.org/10.3365/KJMM.2016.54.8.615
  10. G. Ghosh, G. V. Narasimha Rao, V. S. Sastry, A. Bharathi, Y. Hariharan and T. S. Radhakrishnan, "X-ray powder diffraction data of CoSi", Power Diffraction, vol. 12, no. 4, pp. 252-254, 1997. DOI: https://doi.org/10.1017/S0885715600009842
  11. F. sen, Y. Karatas, M. Gulcan, M. Zahmakiran, "Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane", RSC Advances, vol. 4, pp. 1526-1531, 2014. DOI: https://doi.org/10.1039/C3RA43701A
  12. M. Son, H. Seo, S. Kim, N. Homg, B. Kim, S. Park, K. Prabakar, H. Kim, "Improved long-term durability of a parallel-type dye-sensitized solar cell module using a platinum metal grid fabricated by direct current magnetron sputtering with heat treatment", J. Power Sources, vol. 222, pp. 333-339, 2013. DOI: https://doi.org/10.1016/j.jpowsour.2012.08.080