DOI QR코드

DOI QR Code

Regional Variation and Discharge Characteristics of Stream Water Quality and Heavy Metals Around the Shihwa Lake Basin

시화호 유역 하천수 일반수질 및 중금속의 변화 및 유출 특성 연구

  • Jeong, Hyeryeong (Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Kim, Kyung-Tae (Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Kim, Eun-Soo (Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Lee, Seung-Yong (Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Ra, Kongtae (Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science and Technology (KIOST))
  • 정혜령 (한국해양과학기술원 환경기반연구센터) ;
  • 김경태 (한국해양과학기술원 환경기반연구센터) ;
  • 김은수 (한국해양과학기술원 환경기반연구센터) ;
  • 이승용 (한국해양과학기술원 환경기반연구센터) ;
  • 나공태 (한국해양과학기술원 환경기반연구센터)
  • Received : 2017.02.22
  • Accepted : 2017.04.03
  • Published : 2017.05.25

Abstract

In order to investigate the characteristics of water quality and heavy metals in Shihwa Lake, concentration comparisons according to land use types and mass discharge through streams were carried out. Based on classification for streams according to land use types, the concentration of DO, SS, POC, $NO_3$ and Chl-a showed higher concentrations in agricultural areas than in industrial and urban areas. However, COD, DIN, DIP, TN, TP, DOC, TOC and heavy metal concentrations showed relatively high values in industrial areas. The concentrations of water qualities and heavy metals were relatively high in March to May and the concentration decreased in summer seasons (July-August). The averages of stream discharges of water qualities were 1,172 kg/d for SS, 151 kg/d for TN, 11.1 kg/d for TP and 389 kg/d for TOC, respectively. The agricultural area, Jangjunbo(S8), accounted for 47.5%(TP)~75.1%(SS) in the total stream discharges. Cu, Zn and Cd in stream waters were found to be more than 92% of the total discharges in industrial area, showing descending order of Zn>Cu>Ni>Pb>Co>Cd.

본 연구에서는 시화호 유역 하천수의 일반수질 및 중금속의 변화 및 유출특성을 파악하기 위하여 시화호로 유입되는 하천수 중 일반수질 및 중금속의 분포 특성, 토지이용형태에 따른 농도비교 및 하천을 통한 유출부하량 조사를 실시하였다. 시화호 유역 하천을 토지이용형태에 따라 산업지역, 도심 및 농업지역으로 구분하여 일반수질 농도 비교를 실시하였을 때, 하천수 중 DO, SS, POC, $NO_3$와 Chl-a는 농업지역이 산업 및 도심지역에 비해 높은 농도를 보였으며 COD, DIN, $PO_4$, TN, TP, DOC와 TOC는 산업지역이 상대적으로 높은 농도를 보였다. 하천수 내 수질 및 중금속 분석항목에 따라 약간의 차이가 존재하지만, 3월~5월 조사시기에 상대적으로 농도가 높고 7월~8월에는 강우에 의한 영향으로 농도가 감소하는 결과를 보였다. 하천유량과 농도를 이용하여 계산된 일반수질의 유출부하량은 SS 1,172 kg/d, TN 151 kg/d, TP 11.1 kg/d, TOC 389 kg/d이었고, 농업지역인 장전보가 전체 유출부하량에서 47.5%(TP)~75.1%(SS)를 차지하고 있었다. 하천수 내 Cu, Zn, Cd은 산업단지 하천을 통한 유출부하량이 전체의 92%를 초과하고 있는 것을 알 수 있었으며, Zn>Cu>Ni>Pb>Co>Cd의 순으로 나타났다.

Keywords

References

  1. Bowes, M.J., Smith, J.T., Jarvie, H.P., Neal, C., Barden, R., 2009, "Changes in point and diffuse source phosphorus inputs to the River Frome (Dorset, UK) from 1966 to 2006", Sci. Total Environ., Vol. 407, No. 6, 1954-1966. https://doi.org/10.1016/j.scitotenv.2008.11.026
  2. Bowes, M.J., Neal, C., Jarvie, H.P., Smith, J.T., Davis, H.N., 2010, "Prediction phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent", Sci. Total Environ., Vol. 408, No. 19, 4239-4250. https://doi.org/10.1016/j.scitotenv.2010.05.016
  3. Chen, D.J., Dahlgren, R.A., Shen, Y.N., Lu, J., 2012, "A Bayesian approach for calculating variables total maximum daily loads and uncertainty assessment", Sci. Total Environ., Vol. 430, 59-67. https://doi.org/10.1016/j.scitotenv.2012.04.042
  4. Choi, M., Furlong, E.T., Moon, H.B., Yu, J., Choi, H.G., 2011, "Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution", Chemosphere, Vol. 85, No. 8, 1406-1413. https://doi.org/10.1016/j.chemosphere.2011.08.016
  5. Diaz, R.J., Rosenberg, R., 2008, "Spreading dead zone and consequences for marine ecosystems", Science, Vol. 321, No. 5891, 926-929. https://doi.org/10.1126/science.1156401
  6. Dierk, W., Michael, R., 2008, "Modelling the impact of river morphology on nitrogen retention-a case study of the Weisse Elster River (Germany)", Ecol. Modell., Vol. 211, No. 1-2, 224-232. https://doi.org/10.1016/j.ecolmodel.2007.09.009
  7. Edwards, A.C., Withers, P.J.A, 2008, "Transport and delivery of suspended solid, nitrogen and phosphorus from various sources to freshwater in the UK", J. Hydrol., Vol. 350, No. 3-4, 144-153. https://doi.org/10.1016/j.jhydrol.2007.10.053
  8. Freedman, P.L., Shabman, L., Reckhow, K., 2008, "Don't debate; Adaptive implementation can help water quality professionals achieve TMDL goals", Water Environ. Technol., Vol. 20, No. 8, 1023-2031.
  9. Gao, C., Zhang, T.L., 2010, "Eutrophication in a Chinese context: Understanding various physical and socio-economic aspects", Ambio, Vol. 39, No. 5-6, 385-393. https://doi.org/10.1007/s13280-010-0040-5
  10. Grizzetti, B., Bouraoui, F., Marsily, G.D., Bidoglio, G.A., 2005, "Statistical method for source apportionment of riverine nitrogen loads", J. Hydrol., Vol. 304, No. 1-4, 302-315. https://doi.org/10.1016/j.jhydrol.2004.07.036
  11. Haag, D., Kaupenjohann, M., 2001, "Landscape fate of nitrate fluxes and emission in Central Europe-a critical review of concepts, data, and models for transport and retention", Agri, Ecosyst. Environ., Vol. 86, No. 1, 1-21. https://doi.org/10.1016/S0167-8809(00)00266-8
  12. Houser, J.H., Richardson, W.B., 2010, "Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem", Hydrobiologia, Vol. 640, No. 1, 71-88. https://doi.org/10.1007/s10750-009-0067-4
  13. Howden, N.J.K, Burt, T.P., Mathias, S.A., Worrall, F., Whelan, M.J., 2011, "Modelling long-term diffuse nitrate pollution at the catchment-scale: data, parameter and epistemic uncertainty", J. Hydrol., Vol. 40, No. 3-4, 337-351. https://doi.org/10.1016/0022-1694(79)90038-6
  14. Jeong, H., Kim, K.T., Kim, E.S., Ra, K., Lee, S.Y., 2016, "Sediment quality assessment for heavy metals in streams around the Shihwa Lake", J. Korean Soc. Mar. Environ. Energy, Vol. 19, No. 1, 25-36 https://doi.org/10.7846/JKOSMEE.2016.19.1.25
  15. Meybeck, M., Chapman, D.V., Helmer, R., 1989, "Global Freshwater quality, Afirst assessment", WHO and UNEP/Blackwell Ltd.
  16. MOF(Ministry of Oceans and Fisheries), 2013, "Standard analytical method for marine environment", 516.
  17. MOF (Ministry of Oceans and Fisheries), 2015, "Project to improve the marine environmental of Lake Shihwa', 714.
  18. Mouri, G., Takizawa, S., Oki, T., 2011, "Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact", J. Environ. Manage., Vol. 92, No. 7, 1837-1848. https://doi.org/10.1016/j.jenvman.2011.03.005
  19. Ra, K, Kim, J.K., Kim, E.S., Kim, K.T., Lee, J.M., Kim, S.K., Kim, E.Y., Lee, S.Y., Park, E.J., 2013, "Evaluation of spatial and temporal variations of water quality in Lake Shihwa and outer Sea by using water quality index in Korea: A case study of influence of tidal power plant operation", J. Korean Soc. Mar. Environ. Energy, Vol. 16, No. 2, 102-114. https://doi.org/10.7846/JKOSMEE.2013.16.2.102
  20. Ra, K., Kim, J.K., Lee, J.M., Lee, S.Y., Kim, E.S., Kim, K.T., 2014, "Characteristics and risk assessment of heavy metals in the stormwater runoffs from industrial region discharged into Shihwa Lake", J. Korean Soc. Mar. Environ. Energy, Vol. 17, No. 4, 1-14. https://doi.org/10.7846/JKOSMEE.2014.17.1.1
  21. Pieterse, N.M., Bleuten, W., Jorgensen, S.E., 2003, "Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries", J. Hydrol., Vol. 271, No. 1-4, 213-225. https://doi.org/10.1016/S0022-1694(02)00350-5
  22. Statham, P.J., 1985, "The determination of dissolved manganese and cadmium in sea water at low nmol-1 concentration by chelation and extraction followed by electrothermal atomic absorption spectrometry", Anal. Chim. Acta, Vol. 169, No. 2, 149-159. https://doi.org/10.1016/S0003-2670(00)86217-0
  23. Sugimura, Y., Suzuki, Y., 1988, "A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample", Mar. Chem., Vol. 24, No. 2, 105-131. https://doi.org/10.1016/0304-4203(88)90043-6
  24. Trevisan, D., Quetin, P., Barbet, D., Dorioz, J.M., 2012, "POPEYE: A river-load oriented model to evaluate the efficiency of environmental policy measures for reducing phosphorus losses", J. Hydrol., Vol. 450-451, 254-266. https://doi.org/10.1016/j.jhydrol.2012.05.001
  25. Ward, A.D., Elliot, W.J., 1995, "Environmental Hydrology, In: Ward, S.D., Elliot, W.J. (Eds.)", CRC Press, Boca Raton 1.