DOI QR코드

DOI QR Code

Alteration in Leukocyte Subsets and Expressions of FcγR and Complement Receptors among Female Ragpickers in Eastern India

  • Mondal, Nandan K. (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Siddique, Shabana (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Banerjee, Madhuchanda (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Roychoudhury, Sanghita (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Mukherjee, Sayali (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Slaughter, Mark S. (Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine) ;
  • Lahiri, Twisha (Department of Experimental Hematology, Chittaranjan National Cancer Institute) ;
  • Ray, Manas R. (Department of Experimental Hematology, Chittaranjan National Cancer Institute)
  • Received : 2016.06.04
  • Accepted : 2016.10.13
  • Published : 2017.06.30

Abstract

Background: There are a million ragpickers in India who gather and trade recyclable municipal solid wastes materials for a living. The objective of this study was to examine whether their occupation adversely affects their immunity. Methods: Seventy-four women ragpickers (median age, 30 years) and 65 age-matched control housemaids were enrolled. Flow cytometry was used to measure leukocyte subsets, and leukocyte expressions of $Fc{\gamma}$ receptor I (CD64), $Fc{\gamma}RIII$ (CD16), complement receptor 1 (CD35) and CR3 (CD11b/CD18), and CD14. Serum total immunoglobulin-E was estimated with enzyme-linked immunosorbent assay. Results: Compared with the controls, ragpickers had significantly (p < 0.0001) higher levels of CD8-T-cytotoxic, CD16+CD56+natural killer, and CD4+CD45RO+memory T-cells, but depleted levels of CD19+B-cells. The percentage of CD4+T-helper-cells was lower than the control group (p < 0.0001), but their absolute number was relatively unchanged (p = 0.42) due to 11% higher lymphocyte counts in ragpickers. In ragpickers, the percentages of CD14+CD16+intermediate and CD14dim CD16+nonclassical monocyte subsets were elevated with a decline in CD14+CD16-classical monocytes. The expressions of CD64, CD16, CD35, and CD11b/CD18 on both monocytes and neutrophils, and CD14 on monocytes were significantly higher in ragpickers. In addition, ragpickers had 2.7-times more serum immunoglobulin-E than the controls (p < 0.0001). After controlling potential confounders, the profession of ragpicking was positively associated with the changes. Conclusion: Ragpicking is associated with alterations in both innate (neutrophils, monocytes, and natural killer cell numbers and expression of complement and $Fc{\gamma}$ receptors) and adaptive immunity (numbers of circulating B cells, helper, cytotoxic, and memory T cells).

Keywords

References

  1. Mor S, Ravindra K, De Visscher A, Dahiya RP, Chandra A. Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci Total Environ 2006;371:1-10. https://doi.org/10.1016/j.scitotenv.2006.04.014
  2. Uplap PA, Bhate K. Health profile of women ragpicker members of a nongovernmental organization in Mumbai, India. Indian J Occup Environ Med 2014;18:140-4. https://doi.org/10.4103/0019-5278.146912
  3. Hunt C. Child waste pickers in India: the occupation and its health risks. Environ Urbanization 1996;8:111-8. https://doi.org/10.1177/095624789600800209
  4. Patil AD, Shekdar AV. Health-care waste management in India. J Environ Manage 2001;63:211-20. https://doi.org/10.1006/jema.2001.0453
  5. Ray MR, Mukherjee G, Roychoudhury S, Lahiri T. Respiratory and general health impairments of ragpickers in India: a study in Delhi. Int Arch Occup Environ Health 2004;77:595-8. https://doi.org/10.1007/s00420-004-0564-8
  6. Ray MR, Roychoudhury S, Mukherjee S, Siddique S, Banerjee M, Akolkar AB, Sengupta B, Lahiri T. Airway inflammation and upregulation of b2 Mac-1 integrin expression on circulating leukocytes of female ragpickers in India. J Occup Health 2009;51:232-8. https://doi.org/10.1539/joh.L8116
  7. Yan SR, Sapru K, Issekutz AC. The CD11/CD18 (beta 2) integrins modulate neutrophil caspase activation and survival following TNF-alpha or endotoxin-induced transendothelial migration. Immunol Cell Biol 2004;82:435-46. https://doi.org/10.1111/j.0818-9641.2004.01268.x
  8. Lilius EM, Nuutila J. Bacterial infections, DNA virus infections, and RNA virus infections manifest differently in neutrophil receptor expression. Sci World J 2012;2012:527347.
  9. Walport MJ. Complement: first of two parts. N Engl J Med 2001;344:1058-66. https://doi.org/10.1056/NEJM200104053441406
  10. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010;11:785-97. https://doi.org/10.1038/ni.1923
  11. Fallman M, Andersson R, Andersson T. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 1993;151:330-8.
  12. Nuutila J, Jalava-Karvinen P, Hohenthal U, Kotilainen P, Pelliniemi TT, Nikoskelainen J, Lilius EM. Use of complement regulators, CD35, CD46, CD55, and CD59, on leukocytes as markers for diagnosis of viral and bacterial infections. Human Immunol 2013;74:522-30. https://doi.org/10.1016/j.humimm.2013.01.011
  13. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN. Nomenclature of monocytes and dendritic cells in blood. Blood 2010;116:e74-80. https://doi.org/10.1182/blood-2010-02-258558
  14. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH. Super SAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011;118:e50-61. https://doi.org/10.1182/blood-2011-01-326827
  15. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004;4:499-511. https://doi.org/10.1038/nri1391
  16. Brekke OL, Christiansen D, Fure H, Pharo A, Fung M, Riesenfeld J, Mollnes TE. Combined inhibition of complement and CD14 abolish E. coli-induced cytokine-, chemokine- and growth factor-synthesis in human whole blood. Mol Immunol 2008;45:3804-13. https://doi.org/10.1016/j.molimm.2008.05.017
  17. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA. Lipopolysaccharide (LPS) binding protein opsonizes LPAS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 1989;170:1231-41. https://doi.org/10.1084/jem.170.4.1231
  18. Campbell MJ, Julious SA, Altman DG. Estimating sample sizes for binary, ordered categorical and continuous outcomes in two group comparisons. BMJ 1995;311:1145-8. https://doi.org/10.1136/bmj.311.7013.1145
  19. Chow S, Shao J, Wang H. Sample Size Calculations in Clinical Research. 2nd ed. Chapman & Hall/CRC Biostatistics Series. 2008 http://www.crcnetbase.com/ doi/pdfplusdirect/10.1201/9781584889830.fmatt.
  20. Williams JR. Revising the Declaration of Helsinki. World Med J 2008;54:120-2.
  21. Dacie JV, Lewis SM. Practical Haematology. 8th ed. London (UK): Churchill-Livingstone; 1996.
  22. Iwatani H, Nagasawa Y, Yamamoto R, Iio K, Mizui M, Horii A, Kitahara T, Inohara H, Kumanogoh A, Imai E, Rakugi H, Isaka Y. CD16+CD56+ cells are a potential culprit for hematuria in IgA nephropathy. Clin ExpNephrol 2015;19:216-24.
  23. Pita-Lopez ML, Ortiz-Lazareno PC, Navarro-Meza M, Santoyo-Telles F, Peralta-Zaragoza O. CD28-, CD45RA(null/dim) and natural killer-like CD8+ T cells are increased in peripheral blood of women with low-grade cervical lesions. Cancer Cell Int 2014;14:97. https://doi.org/10.1186/s12935-014-0097-5
  24. Mills KHG. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841-55. https://doi.org/10.1038/nri1485
  25. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004;22:745-63. https://doi.org/10.1146/annurev.immunol.22.012703.104702
  26. McNeill L, Cassady RL, Sarkardei S, Cooper JC, Morgan G, Alexander DR. CD45 isoforms in T cell signaling and development. Immunol Lett 2004;92:125-34. https://doi.org/10.1016/j.imlet.2003.10.018
  27. Bozdogan G, Erdem E, Demirel GY, Yildirmak Y. The role of Treg cells and FoxP3 expression in immunity of b-thalassemia major and ${\beta}$-thalassemia trait patients. Pediatr Hematol Oncol 2010;27:534-45. https://doi.org/10.3109/08880018.2010.503334
  28. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007;81:584-92. https://doi.org/10.1189/jlb.0806510
  29. Rossol M, Kraus S, Pierer M, Baerwald C, Wagner U. The CD14 (bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 2012;64:671-7. https://doi.org/10.1002/art.33418
  30. Beaulieu LM, Clancy L, Tanriverdi K, Benjamin EJ, Kramer CD, Weinberg EO, He X, Mekasha S, Mick E, Ingalls RR, Genco CA, Freedman JE. Specific inflammatory stimuli lead to distinct platelet responses in mice and humans. PLoS One 2015;10:e0131688. https://doi.org/10.1371/journal.pone.0131688
  31. Stokes KY, Granger DN. Platelets: critical link between inflammation and microvascular dysfunction. J Physiol 2012;590:1023-34. https://doi.org/10.1113/jphysiol.2011.225417
  32. Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigal V, Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One 2011;6:e25595. https://doi.org/10.1371/journal.pone.0025595
  33. Paulsson JM, Jacobson SH, Lundahl J. Neutrophil activation during transmigration in vivo and in vitro: a translational study using the skin chamber model. J Immunol Methods 2010;361:82-8. https://doi.org/10.1016/j.jim.2010.07.015
  34. Pauksens K, Fjaertoft G, Douhan-Hakansson L, Venge P. Neutrophil and monocyte receptor expression in uncomplicated and complicated influenza A infection with pneumonia. Scand J Infect Dis 2008;40:326-37. https://doi.org/10.1080/00365540701646287
  35. Nuutila J, Hohenthal U, Laitinen, Kotilainen P, Rajamaki A, Nikoskelainen J, Lilius EM. Simultaneous quantitative analysis of $Fc{\gamma}RI$ (CD64) expression on neutrophils and monocytes: a new, improved way to detect infections. J Immunol Methods 2007;328:189-200. https://doi.org/10.1016/j.jim.2007.09.002
  36. Vara EJ, Svanes C, Skorge TD, Berstad A, Florvaag E, Jarvis D, Omenaas E, Waatevik M, Johannessen A, Lied GA. Functional gastrointestinal symptoms are associated with higher serum total IgE levels, but less atopic sensitization. Dig Dis Sci 2016;61:189-97. https://doi.org/10.1007/s10620-015-3835-1
  37. Kiiski V, Karlsson O, Remitz A, Reitamo S. High serum total IgE predicts poor long-term outcome in atopic dermatitis. Acta DermVenereol 2015;95:943-7.
  38. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-3. https://doi.org/10.1126/science.1698311
  39. Vimercati L, Gatti MF, Baldassarre A, Nettis E, Favia N, Palma M, Martina GL, Di Leo E, Musti M. Occupational exposure to urban air pollution and allergic diseases. Int J Environ Res Public Health 2015;12:12977-87. https://doi.org/10.3390/ijerph121012977