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Abstract. In this paper, we prove common fixed point theorems for L-
fuzzy mappings under implicit relation in b-metric spaces. Further, results
obtained for an integral type contractive condition. These theorems gen-
eralize and improve previous corresponding results.
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1. Introduction and preliminaries

In 1981, Heilpern [10] introduced the concept of fuzzy mapping and proved
fixed point theorem for fuzzy contractive mappings in metric linear spaces as a
generalization of Nadler [12] contraction principle. In 1967, Goguen [9] intro-
duced the notion of L-Fuzzy sets as a generalization of fuzzy sets. Recently,
Rashid et al. [19] established the existence of common L-fuzzy fixed point in
complete metric spaces.

As a generalization of metric spaces, Bakhtin [1] introduced the concept of
b-metric spaces and Czerwik [6, 7] used this concept to give some generalizations
Banach’s fixed point theorem.

In this paper, we define the notion of L-fuzzy sets in b-metric spaces. Also, we
prove common fixed point theorems for L-fuzzy mappings under implicit relation
in b-metric spaces. The object of our paper is to reduce the completeness of the
whole space by completeness of subspace (joint orbitally complete) in b-metric
spaces. Our results generalize and improve corresponding results of [3, 4, 14, 19]
and others.
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Definition 1.1 ([1]). Let X be a nonempty set. A mapping d : X×X → [0,∞)
is called b-metric if there exists a real number b ≥ 1 such that for every x, y, z ∈
X, we have:

(d1) d(x, y) = 0 ⇔ x = y,
(d2) d(x, y) = d(y, x),
(d4) d(x, z) ≤ b[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

Put b = 1 in above definition then b-metric spaces give metric spaces.

Example 1.2 ([17]). Let X = {a, b, c} and define d(a, b) = d(b, a) = d(b, c) =
d(c, b) = 1 and d(a, c) = d(c, a) = m ≥ 2, then

d(a, b) =
m

2
[d(a, c) + d(c, b)]

for all a, b, c ∈ X. If m < 2, the ordinary triangle inequality does not hold.

Definition 1.3 ([9]). A partially ordered set (L,≤L,∨,∧) is called
(I) a lattice, if a ∨ b ∈ L and a ∧ b ∈ L for any a, b ∈ L,

(II) a complete lattice, if ∨A ∈ L and ∧A ∈ L for any A ⊆ L,
(III) distributive if a∨ (b∧ c) = (a∨ b)∧ (a∨ c), a∧ (b∨ c) = (a∧ b)∨ (a∧ c)

for any a, b, c ∈ L.

Definition 1.4 ([9]). An L-fuzzy set A on a nonempty set X is a function
A : X → L, where L is complete distributive lattice with 1L and 0L. In L-fuzzy
sets if L = [0, 1], then we obtained fuzzy sets.

The αL-level set of L-fuzzy set A is denoted by AαL and is defined as follows

AαL = {x : αL ≼L A(x)} if αL ∈ L\{0L}, A0L = {x : 0L ≼L A(x)},
where B denotes the closure of the set B. The characteristic function χLA

of an
L-fuzzy set A as follows

χLA(x) =

{
0L, if x /∈ A,
1L, if x ∈ A.

Definition 1.5 ([19]). Let X be an arbitrary set and Y a metric space. A
mapping T is called an L-fuzzy mapping if T is a mapping from X into ℑL(Y ).
An L-fuzzy mapping T is an L-fuzzy subset on X×Y with membership function
T (x)(y). The function T (x)(y) is the grade of membership of y in T (x).

Definition 1.6 ([19]). Let (X, d) be a metric space and T1, T2 are L-fuzzy
mappings from X into ℑL(Y ). A point z ∈ X is called an L-fuzzy fixed point
of T1 if z ∈ {T1z}αL , where αL ∈ L\{0L}. The point z ∈ X is called a common
L-fuzzy fixed point of T1 and T2 if z ∈ {T1z}αL ∩ {T2z}αL .

Definition 1.7 ([5]). Let (X, d) be a b-metric space. A sequence {xn} in X is
called:

(I) convergent if and only if there exists x ∈ X such that d(xn, x) → 0 as
n → ∞.
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(II) Cauchy if and only if d(xn, xm) → 0 as m,n → ∞.

A b-metric space is said to be complete if and only if each Cauchy sequence in
this space is convergent.

Let (X, d) be a b-metric space, denote CP (X) the collection of nonempty
compact subsets of X and by CL(X) the class of all nonempty closed subsets
of X. For x ∈ X and A,B ∈ CL(X), we define d(x,A) = inf{d(x, a) : a ∈ A},
δ(A,B) = sup{d(a,B) : a ∈ A}. Then the generalized Hausdorff b-metric H on
CL(X) inducted by d is defined as H(A,B) = max{sup

a∈A
d(a,B), sup

b∈B
d(A, b)} for

all A,B ∈ CL(X).

Lemma 1.8 ([12]). If A,B ∈ CP (X) and a ∈ A, then for each ϵ > 0, there
exists b ∈ B such that d(a, b) ≤ H(A,B) + ϵ.

Lemma 1.9 ([7]). Let (X, d) be a b-metric space, A,B ∈ CL(X), then d(a,B) ≤
H(A,B) for all a ∈ A.

Definition 1.10 ([18]). Let I, J be two mappings from a metric space X into
itself and T1, T2 be fuzzy mappings from X into W (X) (The set of all fuzzy sets
of X which its α-level sets are nonempty compact subsets of X). If for some
x0 ∈ X, there exist {yn} in X such that

{y2n+1} = {Jx2n+1} ⊂ T1x2n, {y2n+2} = {Ix2n+2} ⊂ T2x2n+1.

then O(T1, T2, I, J, x0) is called the orbit for the mappings (T1, T2, I, J)

Definition 1.11 ([18]). A metric space X is called x0 joint orbitally complete,
if every Cauchy sequence of each orbit at x0 is convergent in X.

Now, one can introduce the following definition.

Definition 1.12. Let I, J be two mappings from a b-metric space X into itself
and T1, T2 be L-fuzzy mappings from X into ℑL(X). If for some x0 ∈ X, there
exist {yn} in X such that

y2n+1 = Jx2n+1 ∈ {T1x2n}αL , y2n+2 = Ix2n+2 ∈ {T2x2n+1}αL .

Then O(T1, T2, I, J, x0) is called the orbit for the mappings (T1, T2, I, J). b-
metric space X is called x0 joint orbitally complete, if every Cauchy sequence of
each orbit at x0 is convergent in X.

Definition 1.13 ([18]). Let I be a mapping from a nonempty subset M of a
metric space (X, d) into itself and T be fuzzy mappings from M into W (M). A
hybrid pair(I, T ) is called D-compatible iff {It} ⊂ Tt for some t in M implies
IT t = TIt.

We can also define the following in setting of L-fuzzy sets.

Definition 1.14. Let (X, d) be a b-metric space. The mappings I : X → X
and T : X → ℑL(X) are called D-compatible iff It ∈ {Tt}αL for some t in X
implies I{Tt}αL ⊂ {TIt}αL .
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Popa [16] (cf.[11]) utilized the idea of implicit function to unify the fixed point
theorems. Imdad and Ali [11] employed this idea in fuzzy metric spaces. Now,
we define the following class of implicit functions as follows:

Let Ψ be the family of all continuous mappings F : [0,∞)6 → [0,∞) satisfying
the following properties:

(Ψ1) F is non-decreasing in the 1st variable and non-increasing in the 3rd,
4th, 5th, 6th coordinate variables,

(Ψ21) there exists h ∈ (0, 1) such that for every u, v ≥ 0, b ≥ 1 with
F (u, v, v, u, b(u+ v), 0) ≤ 0 or

(Ψ22) F (u, v, u, v, 0, b(u+ v)) ≤ 0 implies u ≤ hv.
(Ψ3) F (u, u, 0, 0, u, u) > 0 for all u > 0.

Example 1.15. F (t1, t2, t3, t4, t5, t6) = t1 − hmax{t2, (t3 + t4)t5t6}.

Example 1.16. F (t1, t2, t3, t4, t5, t6) = t1 − hmin{t2, (t3 + t4), (t5 + t6)}.

Example 1.17. F (t1, t2, t3, t4, t5, t6) = t1 − hmin{t2, b(t3 + t4), (t5 + t6)}.

Example 1.18. F (t1, t2, t3, t4, t5, t6) = t1 − ht2.

Example 1.19. F (t1, t2, t3, t4, t5, t6) = t1 − hmin{t2, (t3 + t4),
(t5+t6)

b }.

2. Main results

Theorem 2.1. Let I, J be two self mappings from a b-metric space (X, d) into
itself and T1, T2 are L-fuzzy mappings from X into ℑL(X) such that {T1x}αL

and {T2x}αL are nonempty closed subsets of X for all x ∈ X and

(1) {T1(X)}αL ⊂ J(X), {T2(X)}αL ⊂ I(X),
(2) the pairs (T1, I) and (T2, J) are D-compatible mappings,
(3) I(X) is x0 joint orbitally complete for some x0 ∈ X.

If there is a F ∈ Ψ such that for all x, y ∈ X,

F

(
H({T1x}αL , {T2y}αL), d(Ix, Jy), d(Ix, {T1x}αL),
d(Jy, {T2y}αL), d(Ix, {T2y}αL), d(Jy, {T1x}αL)

)
≤ 0, (1)

then there exists z ∈ X such that z = Iz = Jz and z ∈ {T1z}αL ∩ {T2z}αL .

Proof. Let x0 ∈ X, there exist y1 = Jx1 ∈ {T1x0}αL , but {T1x0}αL ∈ CP (X)
and {T2x1}αL ∈ CP (X), then there exist y2 = Ix2 ∈ {T2x1}αL such that
d(y1, y2) ≤ H({T1x0}αL , {T2x1}αL). Since

F

(
d(y1, y2), d(y0, y1), d(y0, y1)

d(y1, y2), b(d(y0, y1) + d(y1, y2)), 0

)

≤ F

(
H({T1x0}αL , {T2x1}αL), d(Ix0, Jx1), d(Ix0, {T1x0}αL),
d(Jx1, {T2x1}αL), d(Ix0, {T2x1}αL), d(Jx1, {T1x0}αL)

)
≤ 0.
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From the property (Ψ21), there exists h ∈ (0, 1) such that d(y1, y2) ≤ hd(y0, y1).
Similarly, one can deduce from the property (Ψ22) that there exists h ∈ (0, 1)
such that d(y2, y3) ≤ hd(y1, y2). Then, we have an orbit O(T1, T2, I, J, x0) such
that

y2n+1 = Jx2n+1 ∈ {T1x2n}αL ,

y2n+2 = Ix2n+2 ∈ {T2x2n+1}αL .

By induction we obtain d(yn, yn+1) ≤ hnd(y0, y1). Since

d(yn, ym) ≤ bd(yn, yn+1) + b2d(yn+1, yn+2) + ...+ bm−n−1d(ym−1, ym)

≤ bd(yn, yn+1) + b2d(yn+1, yn+2) + ...+ bm−nd(ym−1, ym)

≤ bhnd(y0, y1)t+ b2hn+1d(y0, y1) + ...+ bm−nhm−1d(y0, y1)

=
bhn

1− bh
d(y0, y1).

Therefore lim
n,m→∞

d(yn, ym) = 0. Hence {yn} is a Cauchy sequence. As {y2n+2}
is a Cauchy sequence in I(X), and I(X) is joint orbitally complete, therefore
there exists z ∈ X such that y2n+2 → z = Iu, for some u ∈ X. Next, we show
that z ∈ {T1u}αL . Since

F

(
d(y2n+2, {T1u}αL), d(z, y2n+1), d(z, {T1u}αL),
d(y2n+1, y2n+2), d(z, y2n+2), bd(y2n+1, {T1u}αL)

)

≤ F

(
H({T1u}αL , {T2x2n+1}αL), d(Iu, Jx2n+1), d(Iu, {T1u}αL),

d(Jx2n+1, {T2x2n+1}αL), d(Iu, {T2x2n+1}αL), d(Jx2n+1, {T1u}αL)

)
≤ 0.

As n → ∞

F (d(z, {T1u}αL), 0, d(z, {T1u}αL), 0, 0, bd(z, {T1u}αL)) ≤ 0

By (Ψ22), we have d(z, {T1u}αL) ≤ h.0 = 0. Thus z ∈ {T1u}αL . As z = Iu ∈
{T1u}αL ∈ J(X) therefore there exists υ ∈ X such that z = Jυ. Similarly z =
Jυ ∈ {T2υ}αL . Since the pair (T1, I) are D-compatible and z = Iu ∈ {T1u}αL

therefore Iz = IIu ∈ {IT1u}αL ∈ {T1Iu}αL = {T1z}αL . Also Jz = JJυ ∈
{JT2υ}αL ∈ {T2Jυ}αL = {T2z}αL . Next, we show that z = Iz. If not, then
suppose d(z, Iz) > 0, then

F

(
d(z, Iz), d(z, Iz), d(z, Iz),
d(z, Iz), d(z, Iz), d(z, Iz)

)

≤ F

(
H({T1z}αL , {T2υ}αL), d(Iz, Jυ), d(Iz, {T1z}αL),
d(Jυ, {T2υ}αL), d(Iz, {T2υ}αL), d(Jυ, {T1z}αL)

)
≤ 0.
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It further implies

F (d(z, Iz), d(z, Iz), 0, 0, d(z, Iz), d(z, Iz)) ≤ 0.

It contradicts (Ψ3). Thus d(z, Iz) = 0. Therefore z = Iz ∈ {T1z}αL . Similarly
z = Jz ∈ {T2z}αL . Hence z ∈ {T1z}αL ∩ {T2z}αL . �

Example 2.2. Let (X, d) be a b-metric space with b = 2, X = [0, 1], d(x, y) =
|x − y|2 and L = [0, 1]. Define the maps I, J, T1, T2 on X as Ix = 2x

3 , Jx = x
4

for all x, y ∈ X. Define also

(T1x)(y) =


0, if 0 ≤ y ≤ 1

5 ,

1
3 , if 1

5 < y < 2x
3 ,

2
3 , if 2x

3 ≤ y ≤ 1.

and

(T2x)(y) =


0, if 0 ≤ y ≤ 1

4 ,

1
6 , if 1

4 < y < x
4 ,

1
4 , if x

4 ≤ y ≤ 1.

Now for α = 2
3 , I{T1x} 2

3
= [ 4x9 , 2

3 ] ⊂ [ 4x9 , 1] = {T1Ix} 2
3

and for α = 1
4 ,

J{T2x} 1
4
= [ x

16 ,
1
4 ] ⊂ [ x

16 , 1] = {T2Jx} 1
4
. i.e., (I, T1) and (J, T2) areD-compatible.

Further, let F (t1, ..., t6) = t3 = d(Ix, {T1x}α) = 0. Then 0 = I0 = J0 ⊂
[0, 1

5 ] ∩ [0, 1
4 ] = {T10}α ∩ {T20}α is a common fixed point.

Remark 2.1. (1) Theorem 2.1 is a generalization of Theorem 2.2 [4], The-
orem 14 [19] and Theorem 3.1 [14].

(2) If put J = I and T1 = T2 = T in Theorem 2.1, we obtain an orbit
(x0, I, T ) of x0 for I and T , in this case we have the following results:

Corollary 2.3. Let I be a self mapping from a b-metric space (X, d) into itself
and T be an L-fuzzy mapping from X into ℑL(X) such that {Tx}αL nonempty
closed subsets of X for all x ∈ X, {T (X)}αL ⊂ I(X), the pair (T, I) is D-
compatible mappings, and I(X) is x0 joint orbitally complete for some x0 ∈ X.
If there is a F ∈ Ψ such that for all x, y ∈ X,

F

(
H({Tx}αL , {Ty}αL), d(Ix, Iy), d(Ix, {Tx}αL),
d(Iy, {Ty}αL), d(Ix, {Ty}αL), d(Iy, {Tx}αL)

)
≤ 0,

then there exists z ∈ X such that z = Iz ∈ {Tz}αL .

Corollary 2.4. Let (X, d) be a b-metric space, I : X → X and T be a fuzzy
mapping from X into ℑ(X) such that {Tx}α is nonempty closed subsets of X
for all x ∈ X, {T (X)}α ⊂ I(X), the pair (T, I) is D-compatible mappings and
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I(X) is x0 joint orbitally complete for some x0 ∈ X. If there is a F ∈ Ψ such
that for all x, y ∈ X,

F

(
H({Tx}α, {Ty}α), d(Ix, Iy), d(Ix, {Tx}α),
d(Iy, {Ty}α), d(Ix, {Ty}α), d(Iy, {Tx}α)

)
≤ 0,

then there exists z ∈ X such that z = Iz ∈ {Tz}α.

If we put I = J = id(id :=the identity mapping on (X, d)) in Theorem 2.1 we
have the following Corollary which generalize Theorem 2.6 [3].

Corollary 2.5. Let T1, T2 be L-fuzzy mappings from a complete b-metric space
(X, d) into ℑL(X). If there is a F ∈ Ψ such that for all x, y ∈ X,

F

(
H({T1x}αL , {T2y}αL), d(x, y), d(x, {T1x}αL),
d(y, {T2y}αL), d(x, {T2y}αL), d(y, {T1x}αL)

)
≤ 0,

then there exists z ∈ X such that z ∈ {T1z}αL ∩ {T2z}αL .

Corollary 2.6. Let T be an L-fuzzy mapping from a complete b-metric space
(X, d) into ℑL(X). If there is a F ∈ Ψ such that for all x, y ∈ X,

F

(
H({Tx}αL , {Ty}αL), d(x, y), d(x, {Tx}αL),
d(y, {Ty}αL), d(x, {Ty}αL), d(y, {Tx}αL)

)
≤ 0,

then there exists z ∈ X such that z ∈ {Tz}αL .

Remark 2.2. Corollary 2.6 is a generalization of Theorem 3.1 [14] and Theorem
1 [15].

Now, we state the following result for family of L-fuzzy mappings in b-metric
spaces.

Theorem 2.7. Let I, J be two self mappings from a b-metric space (X, d) into
itself and {Tn}αL , n ∈ N be L-fuzzy mappings from X into ℑL(X) such that

(1) {Ti(X)}αL ⊂ J(X), {Tj(X)}αL ⊂ I(X), i = 2n, j = 2n+ 1
(2) the pairs (Ti, I) and (Tj , J) are D-compatible mappings,
(3) I(X) is x0 joint orbitally complete for some x0 ∈ X.

If there is a F ∈ Ψ such that for all x, y ∈ X,

F

(
H({Tix}αL , {Tjy}αL), d(Ix, Jy), d(Ix, {Tix}αL),
d(Jy, {Tjy}αL), d(Ix, {Tjy}αL), d(Jy, {Tix}αL)

)
≤ 0,

then there exists z ∈ X such that z = Iz = Jz and z ∈ ∩∞
n=0{Tnz}αL .

Proof. Proof of this theorem is similar to Theorem 2.1. Therefore, proof skipped.
�

Remark 2.3. Theorem 2.7 is a generalization of [4, Theorem 2.3] and [18,
Theorem 1].

Remark 2.4. In view of Examples 1.15-1.19, one can derive several new fixed
point results.
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3. Results with integral type contraction

In 2002, Branciari [2] defined an integral type contraction and obtained a gen-
eralization of Banach contraction principle. Some results on fixed point theorems
of integral type contraction have appeared (see, e.g. [8, 13]). In this section, we
prove a fixed point result for integral type contractive condition with implicit
relation for two pairs of L-fuzzy and non self mappings in b-metric spaces.

Let Ψ̂ be the family of all continuous mappings F : [0,∞)6 → [0,∞) satisfying
the following properties:

(Ψ̂1) F is non-decreasing in the 1st variable and non-increasing in the 3rd,
4th, 5th, 6th coordinate variables,

(Ψ̂21) there exists h ∈ (0, 1) such that for every u, v ≥ 0, b ≥ 1 with∫ F (u,v,v,u,b(u+v),0)

0
φ(s)ds ≤ 0 or

(Ψ̂22)
∫ F (u,v,u,v,0,b(u+v))

0
φ(s)ds ≤ 0 implies u ≤ hv.

(Ψ̂3)
∫ F (u,u,0,0,u,u)

0
φ(s)ds > 0 for all u > 0.

where φ : [0,∞) → [0,∞) is a summable non negative Lebesgue integrable
function such that for each ϵ ∈ [0, 1],

∫ ϵ

0
φ(s)ds ≥ 0. Note that if φ(s) = 1, then

Ψ̂ ⇒ Ψ.

Example 3.1.
∫ F (t1,t2,t3,t4,t5,t6)

0
φ(s)ds =

∫ t1−ht2
0

φ(s)ds.

Theorem 3.2. In Theorem 2.1, if we replace the inequality (2.1) with the fol-

lowing: there is a F ∈ Ψ̂ such that for all x, y ∈ X

∫ F

 H({T1x}αL , {T2y}αL), d(Ix, Jy), d(Ix, {T1x}αL),
d(Jy, {T2y}αL), d(Ix, {T2y}αL), d(Jy, {T1x}αL)


0

φ(s)ds ≤ 0. (2)

then consequences of Theorem 2.1 remain true.

Remark 3.1. Define φ(s) = 1 in Theorem 3.2, then Theorem 3.2 implies The-
orem 2.1.
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