References
- Alegria A, Delgado S, Florez AB, Mayo B. 2013. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 93: 657-673. https://doi.org/10.1007/s13594-013-0128-3
- Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500. https://doi.org/10.1128/jb.173.23.7491-7500.1991
- Allameh SK, Daud H, Yusoff FM, Saad CR, Ideris A. 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 11: 3810-3816.
- Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267. https://doi.org/10.1111/j.1574-6968.2006.00186.x
- Jeong SH, Lee HJ, Jung JY, Lee SH, Seo H-Y, Park W-S, Jeon CO. 2013. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 160: 252-259. https://doi.org/10.1016/j.ijfoodmicro.2012.10.015
- Fusc o V, Quero GM, Cho GS, Kabisc h J, Meske D, Neve H, et al. 2015. The genus Weissella: taxonomy, ecology and biotechnological potential. Front. Microbiol. 6: 155.
- Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
- Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS. 2007. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 73: 2247-2250. https://doi.org/10.1128/AEM.02484-06
- Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K. 2012. Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J. Appl. Microbiol. 112: 99-108. https://doi.org/10.1111/j.1365-2672.2011.05180.x
- Leong KH, Chen YS, Lin YH, Pan SF, Yu B, Wu HC, Yanagida F. 2013. Weissellicin L, a novel bacteriocin from sian-sianzih-isolated Weissella hellenica 4-7. J. Appl. Microbiol. 115: 70-76. https://doi.org/10.1111/jam.12218
- Nam H, Ha M, Bae O, Lee Y. 2002. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori. Appl. Environ. Microbiol. 68: 4642-4645. https://doi.org/10.1128/AEM.68.9.4642-4645.2002
- Lee S-H, Ku H-J, Ahn M-J, Hong J-S, Lee SH, Shin H, et al. 2015. Isolation of Weissella jogaejeotgali sp. nov. from jogaejeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 65: 4674-4681. https://doi.org/10.1099/ijsem.0.000631
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
- Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618. https://doi.org/10.1093/nar/29.12.2607
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 23: 673-679. https://doi.org/10.1093/bioinformatics/btm009
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
- Zdobnov EM, Apweiler R. 2001. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848. https://doi.org/10.1093/bioinformatics/17.9.847
- Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
- Azcarate-Peril MA, Tallon R, Klaenhammer TR. 2009. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92: 870-886. https://doi.org/10.3168/jds.2008-1457
- Divya JB, Varsha KK, Nampoothiri KM. 2012. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl. Biochem. Biotechnol. 167: 1314-1324. https://doi.org/10.1007/s12010-012-9561-7
- Mager WH, de Boer AH, Siderius MH, Voss HP. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73-75. https://doi.org/10.1379/1466-1268(2000)005<0073:CRTOAO>2.0.CO;2
- Lee S-H, Ahn M-J, Hong J-S, Lee J-H. 2015. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing. J. Korean Soc. Appl. Biol. Chem. 58: 453-461. https://doi.org/10.1007/s13765-015-0062-6
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
- Wang L, Si W, Xue H, Zhao X. 2017. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell. Microbiol. 19: e12731 https://doi.org/10.1111/cmi.12731
- Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder - distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302. https://doi.org/10.1371/journal.pone.0077302
Cited by
- Probiotic potential of Weissella paramesenteroides MYPS5.1 isolated from customary dairy products and its therapeutic application vol.12, pp.1, 2017, https://doi.org/10.1007/s13205-021-03074-2