DOI QR코드

DOI QR Code

Macromolecular and Elemental Composition Analyses of Leuconostoc mesenteroides ATCC 8293 Cultured in a Chemostat

  • Bang, Jeongsu (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Li, Ling (Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology) ;
  • Seong, Hyunbin (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Kwon, Ye Won (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Jeong, Eun Ji (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Lee, Dong-Yup (Department of Chemical and Biomolecular Engineering, National University of Singapore) ;
  • Han, Nam Soo (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
  • Received : 2017.01.02
  • Accepted : 2017.02.24
  • Published : 2017.05.28

Abstract

The cellular composition and metabolic compounds of Leuconostoc mesenteroides ATCC 8293 were analyzed after cultivation in an anaerobic chemostat. The macromolecular composition was 24.4% polysaccharide, 29.7% protein, 7.9% lipid, 2.9% DNA, and 7.4% RNA. Its amino acid composition included large amounts of lysine, glutamic acid, alanine, and leucine. Elements were in the order of C > O > N > H > S. The metabolites in chemostat culture were lactic acid (73.34 mM), acetic acid (7.69 mM), and mannitol (9.93 mM). These data provide a first view of the cellular composition of L. mesenteroides for use in metabolic flux analysis.

Keywords

References

  1. Hemme D, Foucaud-Scheunemann C. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
  2. Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. 2008. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953-959. https://doi.org/10.1007/s10295-008-0369-y
  3. Kang H, Myung EJ, Ahn KS, Eom HJ, Han NS, Kim YB, et al. 2009. Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-${\kappa}B$ and p38/JNK. Cytokine 46: 283-289. https://doi.org/10.1016/j.cyto.2009.02.005
  4. Lee MS, Cho SK, Eom HJ, Kim SY, Kim TJ, Han NS. 2008. Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J. Microbiol. Biotechnol. 18: 1141-1145.
  5. Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I. 2008. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-${\gamma}$ production. World J. Gastroenterol. 14: 1192-1203. https://doi.org/10.3748/wjg.14.1192
  6. Li L, Shin SY, Lee KW, Han NS. 2014. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase. Lett. Appl. Microbiol. 59: 404-411. https://doi.org/10.1111/lam.12293
  7. Cho SK, Shin SY, Lee SJ, Li L, Moon JS, Kim DJ, et al. 2015. Simple synthesis of isomaltooligosaccharides during sauerkraut fermentation by addition of Leuconostoc starter and sugars. Food Sci. Biotechnol. 24: 1443-1446. https://doi.org/10.1007/s10068-015-0185-x
  8. Jin Q, Li L, Moon JS, Cho SK, Kim YJ, Lee SJ, et al. 2016. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene. J. Biosci. Bioeng. 121: 479-483. https://doi.org/10.1016/j.jbiosc.2015.09.007
  9. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616. https://doi.org/10.1073/pnas.0607117103
  10. Kim YJ, Seo EY, Kim JH. 2012. Development of a chemically defined minimal medium for the exponential growth of Leuconostoc mesenteroides ATCC 8293. J. Microbiol. Biotechnol. 22: 1518-1522. https://doi.org/10.4014/jmb.1205.05053
  11. Chervaux C, Ehrlich SD, Maguin E. 2000. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. Microbiol. 66: 5306-5311. https://doi.org/10.1128/AEM.66.12.5306-5311.2000
  12. Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, et al. 2009. Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb. Cell Fact. 8: 1. https://doi.org/10.1186/1475-2859-8-1
  13. Herbert D, Phipps PJ, Strange RE. 1971. Chemical analysis of microbial cells, pp. 209-344, In Norris JR, Ribbons DW (eds.). Methods in Microbiology, Vol. 5. Academic Press, London. UK.
  14. Novak L, Loubiere P. 2000. The metabolic network of Lactococcus lactis: distribution of 14C-labeled substrates between catabolic and anabolic pathways. J. Bacteriol. 182: 1136-1143. https://doi.org/10.1128/JB.182.4.1136-1143.2000
  15. Izard J, Limberger RJ. 2003. Rapid screening method for quantitation of bacterial cell lipids from whole cells. J. Microbiol. Methods 55: 411-418. https://doi.org/10.1016/S0167-7012(03)00193-3
  16. Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, et al. 2006. Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genomescale metabolic model. J. Biol. Chem. 281: 40041-40048. https://doi.org/10.1074/jbc.M606263200
  17. Kim SJ, Chang J, Singh M. 2015. Peptidoglycan architecture of gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta 1848: 350-362. https://doi.org/10.1016/j.bbamem.2014.05.031
  18. Douillard FP, de Vos WM. 2014. Functional genomics of lactic acid bacteria: from food to health. Microb. Cell Fact. 13: 1. https://doi.org/10.1186/1475-2859-13-1
  19. Oliveira AP, Nielsen J, Forster J. 2005. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5: 1. https://doi.org/10.1186/1471-2180-5-1
  20. Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. 2009. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75: 3627-3633. https://doi.org/10.1128/AEM.00138-09
  21. Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, et al. 2011. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6: e18783. https://doi.org/10.1371/journal.pone.0018783
  22. Vinay-Lara E, Hamilton JJ, Stahl B, Broadbent JR, Reed JL, Steele JL. 2014. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A. PLoS One 9: e110785. https://doi.org/10.1371/journal.pone.0110785

Cited by

  1. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris vol.103, pp.7, 2017, https://doi.org/10.1007/s00253-019-09630-4
  2. Probiotic sugar confectionery fortified with flax seeds (Linum usitatissimum L.) vol.57, pp.5, 2020, https://doi.org/10.1007/s13197-020-04276-x