참고문헌
- Abdelhamed, Z.A., Natarajan, S., Wheway, G., Inglehearn, C.F., Toomes, C., Johnson, C.A., and Jagger, D.J. (2015). The Meckel- Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the noncanonical Wnt pathway. Dis. Model. Mech. 8, 527-541. https://doi.org/10.1242/dmm.019083
- Arts, H.H., Doherty, D., van Beersum, S.E., Parisi, M.A., Letteboer, S.J., Gorden, N.T., Peters, T.A., Märker, T., Voesenek, K., Kartono, A., et al. (2007). Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat. Genet. 39, 882-888. https://doi.org/10.1038/ng2069
- Awata, J., Takada, S., Standley, C., Lechtreck, K.F., Bellvé, K.D., Pazour, G.J., Fogarty, K.E., and Witman, G.B. (2014). NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J. Cell Sci. 127, 4714-4727. https://doi.org/10.1242/jcs.155275
- Bachmann-Gagescu, R., Phelps, I.G., Stearns, G., Link, B.A., Brockerhoff, S.E., Moens, C.B., and Doherty, D. (2011). The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum. Mol. Genet. 20, 4041-4055. https://doi.org/10.1093/hmg/ddr332
- Bachmann-Gagescu, R., Dona, M., Hetterschijt, L., Tonnaer, E., Peters, T., de Vrieze, E., Mans, D.A., van Beersum, S.E., Phelps, I.G., Arts, H.H., et al. (2015). The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 11, e1005575. https://doi.org/10.1371/journal.pgen.1005575
- Barbelanne, M., Hossain, D., Chan, D.P., Peränen, J., and Tsang, W.Y. (2015). Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum. Mol. Genet. 24, 2185-2200. https://doi.org/10.1093/hmg/ddu738
- Boldt, K., Mans, D.A., Won, J., van Reeuwijk, J., Vogt, A., Kinkl, N., Letteboer, S.J., Hicks, W.L., Hurd, R.E., Naggert, J.K., et al. (2011). Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J. Clin. Invest. 121, 2169-2180. https://doi.org/10.1172/JCI45627
- Chavez, M., Ena, S., Van Sande, J., de Kerchove d'Exaerde, A., Schurmans, S., and Schiffmann, S.N. (2015). Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output. Dev. Cell. 34, 338-350. https://doi.org/10.1016/j.devcel.2015.06.016
- Chih, B., Liu, P., Chinn, Y., Chalouni, C., Komuves, L.G., Hass, P.E., Sandoval, W., and Peterson, A.S. (2011). A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell. Biol. 14, 61-72. https://doi.org/10.1038/ncb2410
- Christopher, K.J., Wang, B., Kong, Y., and Weatherbee, S.D. (2012). Forward genetics uncovers transmembrane protein 107 as a novel factor required for ciliogenesis and sonic hedgehog signaling. Dev. Biol. 368, 382-392. https://doi.org/10.1016/j.ydbio.2012.06.008
- Craige, B., Tsao, C.C., Diener, D.R., Hou, Y., Lechtreck, K.F., Rosenbaum, J.L., and Witman, G.B. (2010). CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927-940. https://doi.org/10.1083/jcb.201006105
- Cui, C., Chatterjee, B., Francis, D., Yu, Q., SanAgustin, J.T., Francis, R., Tansey, T., Henry, C., Wang, B., Lemley, B., et al. (2011). Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis. Model. Mech. 4, 43-56. https://doi.org/10.1242/dmm.006262
- Damerla, R.R., Cui, C., Gabriel, G.C., Liu, X., Craige, B., Gibbs, B.C., Francis, R., Li, Y., Chatterjee, B., San Agustin, J.T., et al. (2015). Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies. Hum. Mol. Genet. 24, 3994-4005. https://doi.org/10.1093/hmg/ddv137
- Dawe, H.R., Smith, U.M., Cullinane, A.R., Gerrelli, D., Cox, P., Badano, J.L, Blair-Reid, S., Sriram, N., Katsanis, N., Attie-Bitach, T., et al. (2007). The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum. Mol. Genet. 16, 173-186. https://doi.org/10.1093/hmg/ddl459
- Dean, S., Moreira-Leite, F., Varga, V., and Gull, K. (2016). Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc. Natl. Acad. Sci. USA 113, E5135-5143. https://doi.org/10.1073/pnas.1604258113
- Delous, M, Baala, L., Salomon, R., Laclef, C., Vierkotten, J., Tory, K., Golzio, C., Lacoste, T., Besse, L., Ozilou, C., et al. (2007). The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875-881. https://doi.org/10.1038/ng2039
- Delous, M., Hellman, N.E., Gaudé, H.M., Silbermann, F., Le Bivic, A., Salomon, R., Antignac, C., and Saunier, S. (2009). Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18, 4711-4723. https://doi.org/10.1093/hmg/ddp434
- den Hollander, A.I., Koenekoop, R.K., Mohamed, M.D., Art,s H.H., Boldt, K., Towns, K.V., Sedmak, T., Beer, M., Nagel-Wolfrum, K., McKibbin, M., et al. (2007). Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat. Genet. 39, 889-895. https://doi.org/10.1038/ng2066
- Diener, D.R., Lupetti, P., and Rosenbaum, J.L. (2015). Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr. Biol. 25, 379-384. https://doi.org/10.1016/j.cub.2014.11.066
- Dowdle, W.E., Robinson, J.F., Kneist, A., Sirerol-Piquer, M.S., Frints, S.G., Corbit, K.C., Zaghloul, N.A., van Lijnschoten, G., Mulders, L., Verver, D.E., et al. (2011). Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89, 94-110. https://doi.org/10.1016/j.ajhg.2011.06.003
- Dyson, J.M., Conduit, S.E., Feeney, S.J., Hakim, S., Di Tommaso, T., Fulcher, A.J., Sriratana, A., Ramm, G., Horan, K.A., Gurung, R., et al. (2016). INPP5E regulates phosphoinositide-dependent cilia transition zone function. J. Cell Biol. 216, 247-263.
- Emmer, B.T., Maric, D., and Engman, D.M. (2010). Molecular mechanisms of protein and lipid targeting to ciliary membranes. J. Cell Sci. 123, 529-536. https://doi.org/10.1242/jcs.062968
- Enjolras, C., Thomas, J., Chhin, B., Cortier, E., Duteyrat, J.L., Soulavie, F., Kernan, M.J., Laurençon, A., and Durand, B. (2012). Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J. Cell Biol. 197, 313-325. https://doi.org/10.1083/jcb.201109148
- Garcia-Gonzalo, F.R., Corbit, K.C., Sirerol-Piquer, M.S., Ramaswami, G., Otto, E.A., Noriega, T.R., Seol, A.D., Robinson, J.F., Bennett, C.L., Josifova, D.J., et al. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776-784. https://doi.org/10.1038/ng.891
- Garcia-Gonzalo, F.R., Phua, S.C., Roberson, E.C., Garcia, G. 3rd., Abedin, M., Schurmans, S., Inoue, T., and Reiter, J.F. (2015). Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev Cell. 34, 400-409. https://doi.org/10.1016/j.devcel.2015.08.001
- Gakovic, M., Shu, X., Kasioulis, I., Carpanini, S., Moraga, I., and Wright, A.F. (2011). The role of RPGR in cilia formation and actin stability. Hum. Mol. Genet. 20, 4840-4850. https://doi.org/10.1093/hmg/ddr423
- Gerner, M., Haribaskar, R., Putz, M., Czerwitzki, J., Walz, G., and Schafer, T. (2010). The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) links RPGR to the nephronophthisis protein network. Kidney Int. 77, 891-896. https://doi.org/10.1038/ki.2010.27
- Goetz, S.C., Bangs, F., Barrington, C.L., Katsanis, N., and Anderson, K.V. (2017). The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 12, e0173399. https://doi.org/10.1371/journal.pone.0173399
- Gorden, N.T., Arts, H.H., Parisi, M.A., Coene, K.L., Letteboer, S.J., van Beersum, S.E., Mans, D.A., Hikida, A., Eckert, M., Knutzen, D., et al. (2008). CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am. J. Hum. Genet. 83, 559-571. https://doi.org/10.1016/j.ajhg.2008.10.002
- Gupta, G.D., Coyaud, E., Goncalves, J., Mojarad, B.A., Liu, Y., Wu, Q., Gheiratmand, L., Comartin, D., Tkach, J.M., Cheung, S.W., et al. (2015). A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163, 1484-1499. https://doi.org/10.1016/j.cell.2015.10.065
- Hong, D.H., Pawlyk, B.S., Shang, J., Sandberg, M.A., Berson, E.L., and Li, T. (2000). A retinitis pigmentosa GTPase regulator (RPGR)- deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc. Natl. Acad. Sci. USA 97, 3649-3654. https://doi.org/10.1073/pnas.97.7.3649
- Hong, D.H., Yue, G., Adamian, M., and Li, T. (2001). Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J. Biol. Chem. 276, 12091-12099. https://doi.org/10.1074/jbc.M009351200
- Hsiao, Y.C., Tong, Z.J., Westfall, J.E., Ault, J.G., Page-McCaw, P.S., and Ferland, R.J. (2009). Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum. Mol. Genet. 18, 3926-3941. https://doi.org/10.1093/hmg/ddp335
- Huang, L., Szymanska, K., Jensen, V.L., Janecke, A.R., Innes, A.M., Davis, E.E., Frosk, P., Li, C., Willer, J.R., Chodirker, B.N., et al. (2011). TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am. J. Hum. Genet. 89, 713-730. https://doi.org/10.1016/j.ajhg.2011.11.005
- Ishikawa, H., and Marshall, W.F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect Biol. 9, pii: a021998. https://doi.org/10.1101/cshperspect.a021998
- Jensen, V.L., Li, C., Bowie, R.V., Clarke, L., Mohan, S., Blacque, O.E., and Leroux, M.R. (2015). Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537-56. https://doi.org/10.15252/embj.201488044
- Jin, H., White, S.R., Shida, T., Schulz, S., Aguiar, M., Gygi, S.P., Bazan, J.F., and Nachury, M.V. (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208-1219. https://doi.org/10.1016/j.cell.2010.05.015
- Khanna, H., Hurd, T.W., Lillo, C., Shu, X., Parapuram, S.K., He, S., Akimoto, M., Wright, A.F., Margolis, B., Williams, D.S., et al. (2005). RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J. Biol. Chem. 280, 33580-33587. https://doi.org/10.1074/jbc.M505827200
- Kim, J., Krishnaswami, S.R., and Gleeson, J.G. (2008). CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796-3805. https://doi.org/10.1093/hmg/ddn277
- Klinger, M., Wang, W., Kuhns, S., Barenz, F., Drager-Meurer, S., Pereira, G., and Gruss, O.J. (2014). The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol. Biol. Cell. 25, 495-507. https://doi.org/10.1091/mbc.E13-09-0526
- Lambacher, N.J., Bruel, A.L., van Dam, T.J., Szymanska, K., Slaats, G.G., Kuhns, S., McManus, G.J., Kennedy, J.E., Gaff, K., Wu, K.M., et al. (2016). TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat. Cell Biol. 18, 122-131. https://doi.org/10.1038/ncb3273
- Lessieur, E.M., Fogerty, J., Gaivin, R.J., Song, P., and Perkins, B.D. (2017). The ciliopathy gene ahi1 is required for zebrafish cone photoreceptor outer segment morphogenesis and survival. Invest. Ophthalmol. Vis. Sci. 58, 448-460. https://doi.org/10.1167/iovs.16-20326
- Li, C., Jensen, V.L., Park, K., Kennedy, J., Garcia-Gonzalo, F.R., Romani, M., De Mori, R., Bruel, A.L., Gaillard, D., Doray, B., et al. (2016). MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol. 14, e1002416. https://doi.org/10.1371/journal.pbio.1002416
- Lee, J.H., Silhavy, J.L., Lee, J.E., Al-Gazali, L., Thomas, S., Davis, E.E., Bielas, S.L., Hill, K.J., Iannicelli, M., Brancati, F., et al. (2012). Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science 335, 966-999. https://doi.org/10.1126/science.1213506
- Long, H., Zhang, F., Xu, N., Liu, G., Diener, D.R., Rosenbaum, J.L., and Huang, K. (2016). Comparative analysis of ciliary membranes and ectosomes. Curr. Biol. 26, 3327-3335. https://doi.org/10.1016/j.cub.2016.09.055
- Louie, C.M., Caridi, G., Lopes, V.S., Brancati, F., Kispert, A., Lancaster, M.A., Schlossman, A.M., Otto, E.A., Leitges, M., Gröne, H.J., et al. (2010). AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 42, 175-180. https://doi.org/10.1038/ng.519
- Ma, L., and Jarman, A.P. (2011). Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. J. Cell Sci. 124, 2622-2630. https://doi.org/10.1242/jcs.084798
- Mahuzier, A., Gaude, H.M., Grampa, V., Anselme, I., Silbermann, F., Leroux-Berger, M., Delacour, D., Ezan, J., Montcouquiol, M., Saunier, S., et al. (2012). Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity. J. Cell Biol. 198, 927-940. https://doi.org/10.1083/jcb.201111009
- Mitchison, H.M., and Valente, E.M. (2017). Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241, 294-309. https://doi.org/10.1002/path.4843
- Mollet, G., Silbermann, F., Delous, M., Salomon, R., Antignac, C., and Saunier, S. (2005). Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum. Mol. Genet. 14, 645-656.
- Otto, E.A., Loeys, B., Khanna, H., Hellemans, J., Sudbrak, R., Fan, S., Muerb, U., O'Toole, J.F., Helou, J., Attanasio, M., et al. (2005). Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior- Loken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 37, 282-288. https://doi.org/10.1038/ng1520
- Park, J., Lee, N., Kavoussi, A., Seo, J.T., Kim, C.H., and Moon, S.J. (2015). Ciliary Phosphoinositide Regulates Ciliary Protein Trafficking in Drosophila. Cell Rep. 13, 2808-2816. https://doi.org/10.1016/j.celrep.2015.12.009
- Patil, H., Tserentsoodol, N., Saha, A., Hao, Y., Webb, M., and Ferreira, P.A. (2012). Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons. Cell Death Dis. 3, e355. https://doi.org/10.1038/cddis.2012.96
- Pratt, M.B, Titlow, J.S., Davis, I., Barker, A.R., Dawe, H.R., Raff, J.W., and Roque, H. (2016). Drosophila sensory cilia lacking MKS proteins exhibit striking defects in development but only subtle defects in adults. J. Cell Sci. 129, 3732-3743. https://doi.org/10.1242/jcs.194621
- Rachel, R.A., Yamamoto, E.A., Dewanjee, M.K., May-Simera, H.L., Sergeev, Y.V., Hackett, A.N., Pohida, K., Munasinghe, J., Gotoh, N., Wickstead, B., et al. (2015). CEP290 alleles in mice disrupt tissuespecific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum. Mol. Genet. 24, 3775-3791. https://doi.org/10.1093/hmg/ddv123
- Rao, K.N., Zhang, W., Li, L., Ronquillo, C., Baehr, W., and Khanna, H. (2016). Ciliopathy-associated protein CEP290 modifies the severity of retinal degeneration due to loss of RPGR. Hum. Mol. Genet. 25, 2005-2012. https://doi.org/10.1093/hmg/ddw075
- Reiter, J.F., Blacque, O.E., and Leroux, M.R. (2012). The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608-618. https://doi.org/10.1038/embor.2012.73
- Roberson, E.C., Dowdle, W.E., Ozanturk, A., Garcia-Gonzalo, F.R., Li, C., Halbritter, J., Elkhartoufi, N., Porath, J.D., Cope, H., Ashley-Koch, A., et al. (2015). TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. J. Cell Biol. 209, 129-142. https://doi.org/10.1083/jcb.201411087
- Ronquillo, C.C., Hanke-Gogokhia, C., Revelo, M.P., Frederick, J.M., Jiang, L., and Baehr, W. (2016). Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB J. 30, 3400-3412. https://doi.org/10.1096/fj.201600511R
- Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801-810. https://doi.org/10.1083/jcb.201112098
- Sang, L., Miller, J.J., Corbit, K.C., Giles, R.H., Brauer, M.J., Otto, E.A., Baye, L.M., Wen, X., Scales, S.J., Kwong, M., et al. (2011). Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513-528. https://doi.org/10.1016/j.cell.2011.04.019
- Sayer, J.A., Otto, E.A., O'Toole, J.F., Nurnberg, G., Kennedy, M.A., Becker, C., Hennies, H.C., Helou, J., Attanasio, M., Fausett, B.V., et al. (2006). The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674-681. https://doi.org/10.1038/ng1786
- Schafer, T., Putz, M., Lienkamp, S., Ganner, A., Bergbreiter, A., Ramachandran, H., Gieloff, V., Gerner, M., Mattonet, C., Czarnecki, P.G., et al. (2008). Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum. Mol. Genet. 17, 3655-3662. https://doi.org/10.1093/hmg/ddn260
- Schouteden, C., Serwas, D., Palfy, M., and Dammermann, A. (2015). The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans. J. Cell Biol. 210, 35-44. https://doi.org/10.1083/jcb.201501013
- Shaheen, R., Almoisheer, A., Faqeih, E., Babay, Z., Monies, D., Tassan, N., Abouelhoda, M., Kurdi, W., Al Mardawi, E., Khalil, M.M., et al. (2015). Identification of a novel MKS locus defined by TMEM107 mutation. Hum. Mol. Genet. 24, 5211-5218. https://doi.org/10.1093/hmg/ddv242
- Shu, X., Fry, A.M., Tulloch, B., Manson, F.D., Crabb, J.W., Khanna, H., Faragher, A.J., Lennon, A., He, S., Trojan, P., et al. (2005). RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum. Mol. Genet. 14, 1183-1197. https://doi.org/10.1093/hmg/ddi129
- Shylo, N.A., Christopher, K.J., Iglesias, A., Daluiski, A., and Weatherbee, S.D. (2016). TMEM107 is a critical regulator of ciliary protein composition and is mutated in Orofaciodigital syndrome. Hum. Mutat. 37, 155-159. https://doi.org/10.1002/humu.22925
- Slaats, G.G., Isabella, C.R., Kroes, H.Y., Dempsey, J.C., Gremmels, H., Monroe, G.R., Phelps, I.G., Duran, K.J., Adkins, J., Kumar, S.A., et al. (2016). MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J. Med. Genet. 53, 62-72. https://doi.org/10.1136/jmedgenet-2015-103250
- Slanchev, K., Pütz, M., Schmitt, A., Kramer-Zucker, A., and Walz, G. (2011). Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum. Mol. Genet. 20, 3119-3128. https://doi.org/10.1093/hmg/ddr214
- Thomas, S., Legendre, M., Saunier, S., Bessières, B., Alby, C., Bonnière, M., Toutain, A., Loeuillet, L., Szymanska, K., Jossic, F., et al. (2012). TCTN3 mutations cause Mohr-Majewski syndrome. Am. J. Hum. Genet. 91, 372-378. https://doi.org/10.1016/j.ajhg.2012.06.017
- Valente, E.M., Logan, C.V., Mougou-Zerelli, S., Lee, J.H., Silhavy, J.L., Brancati, F., Iannicelli, M., Travaglini, L., Romani, S., Illi, B., et al. (2010). Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat. Genet. 42, 619-625. https://doi.org/10.1038/ng.594
- Veleri, S., Manjunath, S.H., Fariss, R.N., May-Simera, H., Brooks, M., Foskett, T.A., Gao, C., Longo, T.A., Liu, P., Nagashima, K., et al. (2014). Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat. Commun. 5, 4207. https://doi.org/10.1038/ncomms5207
- Vierkotten, J., Dildrop, R., Peters, T., Wang, B., and Ruther, U. (2007). Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569-2577. https://doi.org/10.1242/dev.003715
- Vieillard, J., Paschaki, M., Duteyrat, J.L., Augiere, C., Cortier, E., Lapart, J.A., Thomas, J., and Durand, B. (2016). Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J. Cell Biol. 214, 875-889. https://doi.org/10.1083/jcb.201603086
- Wang, W.J., Tay, H.G., Soni, R., Perumal, G.S., Goll, M.G., Macaluso, F.P., Asara, J.M., Amack, J.D., and Tsou, M.F. (2013). CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat. Cell Biol. 15, 591-601. https://doi.org/10.1038/ncb2739
- Weatherbee, S.D., Niswander, L.A., and Anderson, K.V. (2009). A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum. Mol. Genet. 18, 4565-4575 https://doi.org/10.1093/hmg/ddp422
- Williams, C.L., Winkelbauer, M.E., Schafer, J.C., Michaud, E.J., and Yoder, B.K. (2008). Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis. Mol. Biol. Cell 19, 2154-2168. https://doi.org/10.1091/mbc.E07-10-1070
- Williams, C.L., Li, C., Kida, K., Inglis, P.N., Mohan, S., Semenec, L., Bialas, N.J., Stupay, R.M., Chen, N., Blacque, O.E., et al. (2011). MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023-1041. https://doi.org/10.1083/jcb.201012116
- Won, J., Gifford, E., Smith, R.S., Yi, H., Ferreira, P.A., Hicks, W.L., Li, T., Naggert, J.K., and Nishina, P.M. (2009). RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum. Mol. Genet. 18, 4329-4339. https://doi.org/10.1093/hmg/ddp385
- Won, J., Marin de Evsikova, C., Smith, R.S., Hicks, W.L., Edwards, M.M., Longo-Guess, C., Li, T., Naggert, J.K., and Nishina, P.M. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20, 482-496. https://doi.org/10.1093/hmg/ddq494
- Yang, T.T., Su, J., Wang, W.J., Craige, B., Witman, G.B., Tsou, M.F., and Liao, J.C. (2015). Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci. Rep. 5, 14096. https://doi.org/10.1038/srep14096
- Yee, L.E., Garcia-Gonzalo, F.R., Bowie, R.V., Li, C., Kennedy, J.K., Ashrafi, K., Blacque, O.E., Leroux, M.R., and Reiter, J.F. (2015). Conserved genetic interactions between ciliopathy complexes cooperatively support ciliogenesis and ciliary signaling. PLoS Genet. 11, e1005627. https://doi.org/10.1371/journal.pgen.1005627
- Zhang, Y., Seo, S., Bhattarai, S., Bugge, K., Searby, C.C., Zhang, Q., Drack, A.V., Stone, E.M., and Sheffield, V.C. (2014). BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum. Mol. Genet. 23, 40-51. https://doi.org/10.1093/hmg/ddt394
- Zhao, C., and Malicki, J. (2011). Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO J. 30, 2532-2544. https://doi.org/10.1038/emboj.2011.165
- Zhao, Y., Hong, D.H., Pawlyk, B., Yue, G., Adamian, M., Grynberg, M., Godzik, A., and Li, T. (2003). The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl. Acad. Sci. USA 100, 3965-3970. https://doi.org/10.1073/pnas.0637349100
피인용 문헌
- Polycystic kidney disease: DZIP1L defines a new functional zip code for autosomal recessive PKD vol.13, pp.9, 2017, https://doi.org/10.1038/nrneph.2017.102
- BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone vol.217, pp.5, 2018, https://doi.org/10.1083/jcb.201709041
- vol.131, pp.16, 2018, https://doi.org/10.1242/jcs.218297
- Cilium structure, assembly, and disassembly regulated by the cytoskeleton vol.475, pp.14, 2018, https://doi.org/10.1042/BCJ20170453
- Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking vol.29, pp.13, 2018, https://doi.org/10.1091/mbc.E18-03-0173
- Cell–cell communication via ciliary extracellular vesicles: clues from model systems vol.62, pp.2, 2018, https://doi.org/10.1042/EBC20170085
- Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking vol.30, pp.5, 2019, https://doi.org/10.1091/mbc.E18-10-0678
- Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis vol.526, pp.10, 2018, https://doi.org/10.1002/cne.24441
- Role for intraflagellar transport in building a functional transition zone vol.19, pp.12, 2017, https://doi.org/10.15252/embr.201845862
- Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila vol.8, pp.None, 2017, https://doi.org/10.7554/elife.49307
- The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster vol.7, pp.None, 2017, https://doi.org/10.3389/fcell.2019.00173
- Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures vol.8, pp.2, 2017, https://doi.org/10.3390/cells8020160
- Ciliary and cytoskeletal functions of an ancient monooxygenase essential for bioactive amidated peptide synthesis vol.76, pp.12, 2017, https://doi.org/10.1007/s00018-019-03065-w
- Establishing and regulating the composition of cilia for signal transduction vol.20, pp.7, 2019, https://doi.org/10.1038/s41580-019-0116-4
- Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes vol.8, pp.7, 2019, https://doi.org/10.3390/cells8070730
- Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies vol.4, pp.1, 2017, https://doi.org/10.3233/trd-190038
- The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity vol.4, pp.1, 2017, https://doi.org/10.3233/trd-190041
- NPHP proteins are binding partners of nucleoporins at the base of the primary cilium vol.14, pp.9, 2017, https://doi.org/10.1371/journal.pone.0222924
- Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models vol.9, pp.3, 2020, https://doi.org/10.3390/cells9030744
- MKS-NPHP module proteins control ciliary shedding at the transition zone vol.18, pp.3, 2020, https://doi.org/10.1371/journal.pbio.3000640
- Architecture of the IFT ciliary trafficking machinery and interplay between its components vol.55, pp.2, 2017, https://doi.org/10.1080/10409238.2020.1768206
- Clinical Implications of Primary Cilia in Skin Cancer vol.10, pp.2, 2017, https://doi.org/10.1007/s13555-020-00355-1
- Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss vol.9, pp.4, 2020, https://doi.org/10.3390/cells9040931
- A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex vol.9, pp.6, 2020, https://doi.org/10.3390/cells9061390
- Tetrahymena Poc5 is a transient basal body component that is important for basal body maturation vol.133, pp.11, 2020, https://doi.org/10.1242/jcs.240838
- Epb41l5 interacts with Iqcb1 and regulates ciliary function in zebrafish embryos vol.133, pp.12, 2017, https://doi.org/10.1242/jcs.240648
- Haploid male germ cells-the Grand Central Station of protein transport vol.26, pp.4, 2017, https://doi.org/10.1093/humupd/dmaa004
- Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding vol.48, pp.3, 2017, https://doi.org/10.1042/bst20191007
- LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation vol.219, pp.7, 2020, https://doi.org/10.1083/jcb.201908132
- Phosphoinositide lipids in primary cilia biology vol.477, pp.18, 2020, https://doi.org/10.1042/bcj20200277
- Structural insights into the architecture and assembly of eukaryotic flagella vol.7, pp.11, 2020, https://doi.org/10.15698/mic2020.11.734
- CEP290 is essential for the initiation of ciliary transition zone assembly vol.18, pp.12, 2017, https://doi.org/10.1371/journal.pbio.3001034
- Defective INPP5E distribution in NPHP1‐related Senior-Loken syndrome vol.9, pp.1, 2021, https://doi.org/10.1002/mgg3.1566
- CEP164C regulates flagellum length in stable flagella vol.220, pp.1, 2017, https://doi.org/10.1083/jcb.202001160
- Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement vol.46, pp.None, 2021, https://doi.org/10.1093/chemse/bjab010
- Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry vol.10, pp.1, 2021, https://doi.org/10.1242/bio.057653
- Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.623753
- Compartmentalization of Photoreceptor Sensory Cilia vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.636737
- Intraflagellar Transport Proteins as Regulators of Primary Cilia Length vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.661350
- Microtubule‐associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly vol.288, pp.3, 2021, https://doi.org/10.1111/febs.15473
- Cilia, ciliopathies and hedgehog-related forebrain developmental disorders vol.150, pp.None, 2017, https://doi.org/10.1016/j.nbd.2020.105236
- La paramécie, un organisme modèle pour étudier la ciliogenèse et les maladies ciliaires vol.37, pp.6, 2017, https://doi.org/10.1051/medsci/2021087
- Tracheal motile cilia in mice require CAMSAP3 for the formation of central microtubule pair and coordinated beating vol.32, pp.20, 2021, https://doi.org/10.1091/mbc.e21-06-0303
- Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease vol.12, pp.11, 2017, https://doi.org/10.3390/genes12111762
- The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis vol.22, pp.22, 2017, https://doi.org/10.3390/ijms222212253
- Fibrogranular materials function as organizers to ensure the fidelity of multiciliary assembly vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-21506-8