DOI QR코드

DOI QR Code

An Efficient Ultrasonic SAFT Imaging for Pulse-Echo Immersion Testing

  • Hu, Hongwei (Changsha University of Science & Technology) ;
  • Jeong, Hyunjo (Division of Mechanical and Automotive Engineering, Wonkwang University)
  • 투고 : 2017.02.11
  • 심사 : 2017.04.10
  • 발행 : 2017.04.30

초록

An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

키워드

참고문헌

  1. J. Kim, J. Jun and J. Lee, "An application of a magnetic camera for an NDT system for aging aircraft," Journal of the Korean society for nondestructive testing, Vol. 30, No. 3, pp. 212-224 (2010)
  2. C. Li, D. Pain and P. D. Wilcox, B. W. Drinkwater, "Imaging composite material using ultrasonic arrays," NDT & E International, Vol. 53, pp. 8-17 (2013) https://doi.org/10.1016/j.ndteint.2012.07.006
  3. S. Kolkoori, N. Wrobel and U. Zscherpel and U. Ewert, "A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials," NDT & E International, Vol. 70, pp. 41-52 (2015) https://doi.org/10.1016/j.ndteint.2014.09.008
  4. E. Sato, M. Shiwa and Y. Shinagawa, T. Ida, S. Yamazoe and A. Sato, "Ultrasonic testing methodfor detection of planar flaws in graphite material," Materials Transactions, Vol. 48, No. 6, pp. 1227-1235 (2007) https://doi.org/10.2320/matertrans.I-MRA2007851
  5. R. Subbaratnam, S. T. Abraham, B. Venkatraman and B. Raj, "Immersionand TOFD (I-TOFD): a novel combination for examination of lower thicknesses," Journal of Nondestructive Evaluation, Vol. 30, No. 3, pp. 137-142 (2011) https://doi.org/10.1007/s10921-011-0101-0
  6. T. Olofsson, "Phase shift migration for imaging layered objects and objects immersed in water," IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, Vol. 57, No. 11, pp. 2522-2530 (2010) https://doi.org/10.1109/TUFFC.2010.1718
  7. K. Mayer, R. Marklein K. J. Langenberg and T. Kreutter, "Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique," Ultrasonics, Vol. 28, No. 4, pp. 241-255 (1990) https://doi.org/10.1016/0041-624X(90)90091-2
  8. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, M. H. Pedersen, "Synthetic aperture ultrasound imaging," Ultrasonics, Vol. 44, pp. 5-15 (2006) https://doi.org/10.1016/j.ultras.2006.07.017
  9. K. Qin, C. Yang and F. Sun, "Generalized frequency-domain synthetic aperture focusing technique for ultrasonic imaging of irregularly layered objects," IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, Vol. 61, No. 1, pp. 133-145 (2014) https://doi.org/10.1109/TUFFC.2014.6689781
  10. T. Stepinski, "An implementation of synthetic aperture focusing technique in frequency domain," IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, Vol. 54, No. 7, pp. 1399-1408 (2007) https://doi.org/10.1109/TUFFC.2007.400
  11. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark and M. H. Pedersen, "Synthetic aperture ultrasound imaging," Ultrasonics, Vol. 44, pp. 5-15 (2006) https://doi.org/10.1016/j.ultras.2006.07.017
  12. X. Guan, J. He and E. M. Rasselkorde, "A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws," Ultrasonics, Vol. 56, pp. 487-496 (2015) https://doi.org/10.1016/j.ultras.2014.09.018
  13. A. Shlivinski and K. J. Langenberg, "Defect imaging with elastic waves in inhomogeneous-anisotropic materials with composite geometries," Ultrasonics, Vol. 49(1), pp. 89-104 (2007) https://doi.org/10.1016/j.ultras.2008.06.010
  14. C. H. Chang, Y. F. Chang and Y. Ma and K. K. Shung, "Reliable estimation of virtual source position for SAFT imaging," IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, Vol. 60, No. 2, pp. 356-363 (2013) https://doi.org/10.1109/TUFFC.2013.2571
  15. T. Scharrer, M. Schrapp, S. J. Rupitsch, A. Sutor and R. Lerch, "Ultrasonic imaging of complex specimens by processing multiple incident angles in full-angle synthetic aperture focusing technique," IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, Vol. 61, No. 5, pp. 830-839 (2014) https://doi.org/10.1109/TUFFC.2014.2974
  16. M. Taner and F. Koehler, "Velocity spectradigital computer derivation applications of velocity functions," Geophysics, Vol. 34, No. 6, pp. 859-881 (1969) https://doi.org/10.1190/1.1440058
  17. A. H. Kleyn, "Seismic Reflection Interpretation," Elsevier Applied Science Publishers, New York, pp. 73-76 (1983)