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Abstract 
 

With cloud storage services, users can handle an enormous amount of data in an efficient 
manner. However, due to the widespread popularization of cloud storage, users have raised 
concerns about the integrity of outsourced data, since they no longer possess the data locally. 
To address these concerns, many auditing schemes have been proposed that allow users to 
check the integrity of their outsourced data without retrieving it in full. Yuan and Yu proposed 
a public auditing scheme with a deduplication property where the cloud server does not store 
the duplicated data between users. In this paper, we analyze the weakness of the Yuan and 
Yu’s scheme as well as present modifications which could improve the security of the scheme. 
We also define two types of adversaries and prove that our proposed scheme is secure against 
these adversaries under formal security models. 
 
 
Keywords: Public auditing, deduplication, data integrity, tag-unforgeability, 
proof-unforgebility 

 
 
https://doi.org/10.3837/tiis.2017.04.021                                                                                                                     ISSN : 1976-7277 



2220                                                             Kim et al.: Provably-Secure Public Auditing with Deduplication 

1. Introduction 

Cloud storage service allows users to outsource their data to a cloud server and access it 
whenever necessary. Due to their widespread availability and convenience, cloud storage 
services have become common in recent years, where diverse commercial products have been 
released, such as Dropbox, Google Drive, and iCloud, which are used by numerous people and 
enterprises [1-3]. 

Cloud storage services are convenient for data management and they have reduced the 
burden of the management, but they also involve new security threats related to outsourced 
data in terms of the integrity of the data. Data are stored remotely in a cloud server, so users are 
unable to be certain that their data are stored in full without any modifications. Thus, after the 
users outsource their data to the server, the server may delete or not store the data in full in 
order to make a profit by saving on storage costs. In order to detect such misbehaviors by the 
storage service provider, many studies have proposed methods for integrity checking without 
downloading the data in full [4-11]. 

Ateniese et al. first proposed the concept of public verifiability and a public auditing scheme 
called provable data possession, which uses the RSA-based homomorphic verifiable tag to 
generate a tag for each block of data [4]. The tag allows users to check whether the server 
contains the data blocks, but this incurs high costs in terms of server computation and 
communication. Juels and Kaliski also proposed a new scheme called Proof of Retrievability 
(POR) which allows the integrity of the remotely stored data to be checked as well as the 
retrievability of the data by applying the error-correcting codes [5]. However, this method also 
incurs high computational overheads on the client side. Shacham and Waters proposed a more 
efficient and compact POR scheme [7] that uses the BLS short signature, they proved that this 
scheme is secure under the security model defined by Juels and Kaliski [5], but it does not 
ensure the confidentiality of the file blocks. Thus, the user data may be revealed to a public 
verifier; called a third party auditor (TPA); who checks the integrity of outsourced data in the 
cloud on behalf of the users. Wang et al. first proposed a privacy-preserving public auditing 
scheme, which ensures the confidentiality of the file blocks [11]. Subsequently, many 
solutions have been proposed with various properties, such as identity privacy, traceability, 
and key updates, in addition to public verifiability and privacy-preserving property [12-25].  

Zheng and Xu proposed a public auditing scheme with deduplication, which makes the 
server store only a single copy of each file (or block) to save the storage costs in a legitimate 
manner [26]. However, Shin et al. showed that the scheme proposed by Zheng and Xu is not 
secure against a weak key attack and they modified it to make it secure against this type of 
attack [27]. Yuan and Yu also proposed a public auditing scheme with deduplication, which 
has constant communication and computation costs of TPA [28]. Li et al. proposed two secure 
systems called SecCloud and SecCloud+ to ensure data integrity and deduplication in the 
cloud [29]. SecCloud+ allows integrity auditing and data deduplication on the encrypted data 
because of the deterministic encryption property in convergent encryption. Alkhojandi and 
Miri also proposed privacy-preserving public auditing scheme with deduplication, which 
ensures that TPA cannot learn any information about the stored data [30]. Unfortunately, most 
schemes, except for the scheme proposed by Yuan and Yu, are not efficiently constructed 
since computation costs of TPA are affected by the number of challenged blocks. In other 
words, they have computation costs of O(k) when performing the auditing process, where k is 
the number of challenged blocks. Recently, He et al. introduced the concept of deduplicatable 
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dynamic proof of storage and proposed an efficient construction that uses homomorphic 
authenticated tree, but their scheme does not ensure public verifiability [31]. For that reason, 
we mainly analyze Yuan and Yu’s scheme which is the most efficient in terms of computation 
and communication costs of TPA.  

In the paper, we show that Yuan and Yu’s scheme is not secure against a malicious server 
and propose a new secure scheme with constant communication and computation costs. We 
also define two types of adversaries and prove that our scheme is secure against these 
adversaries under formal security models. 

The rest of paper is organized as follows. In Section 2, we describe the formal security 
models and review some preliminaries. We demonstrate the insecurity of Yuan and Yu’s 
scheme in Section 3. In Section 4, we construct our scheme and prove its security. We give our 
conclusion in Section 5. 

 

 
 

2. Models and Preliminaries 

2.1 System Model 
We consider a system model with four entities, i.e., trust authority (TA), data owner, cloud 
server, and the third party auditor (TPA) as shown in Fig. 1. TA generates a master key and a 
set of public keys for the system, but does not participate in any other process. A data owner 
has a collection of data and outsources them to the cloud server with authenticated tags 
corresponding to each block of data files. When the data owner wishes to check the integrity of 
their outsourced data, TPA performs the integrity checking on behalf of the data owner. To 
check the integrity of the data, TPA sends a challenge message to the cloud server. After 
receiving the challenge message, the cloud server generates a valid proof for the selected 
blocks and responds to TPA. Next, TPA verifies the validity of the received proof. We define 
the algorithms for our public auditing scheme as follows. 

  

Fig. 1. System model for public auditing with deduplication 
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• KeyGen takes a security parameter and returns the master key MK , a set of public keys 
 PK  for the system and a secret key SK for a user.  

• TagGen takes as inputs the set of public keys PK , a secret key SK  of a user, and a file 
 1= ( ,..., )nF m m , where n  is the number of the file blocks. It outputs tags 1{ }i i nσ ≤ ≤  for 
 the file blocks.  

• Challenge takes the set of public keys PK  as an input and returns a challenge message 
 .CM   

• Prove takes as inputs the set of public keys ,PK  the challenge message ,CM  and the 
 pairs of message and tag 1{ , }i i i nm σ ≤ ≤ . It outputs a proof P  for the challenge message 
 .CM   

• Verify takes as inputs the set of public keys ,PK  the challenge message ,CM  and the 
 proof .P  It outputs Accept  or .Reject   

• Deduplication is an interactive protocol between a user and the cloud server for verifying 
that the user and the cloud have the same data. 

 

2.2 Security Model 
In this section, we first introduce our new security models in the public auditing scheme. We 
assume that there are two types of adversaries in our public auditing scheme, i.e., Type-I 
adversary 1A  and Type-II adversary 2.A 1A  can acquire valid pairs of message and tag, and 
generate a forged pair of message and tag without knowing the secret key of the user. 2A  can 
also acquire valid pairs of message and tag, and generate a forged proof for the challenged 
message without tag-forgery. We define new security models, tag-unforgeability and 
proof-unforgeability, using the game between a challenger and Type-I adversary 1A  and 
Type-II adversary 2A , respectively, as follows,.  
 
Tag-Unforgeability. If a valid tag is not able to be generated by Type-I adversary 1,A  then we 
consider that a public auditing scheme satisfies tag-unforgeability. It is defined using the 
following game between a challenger C  and Type-I adversary 1.A  

  
    1.  The challenger C  runs KeyGen algorithm to generate the master key ,MK  a secret 

 key ,SK  and a set of public keys PK , and then gives PK  to Type-I adversary 1.A  
 
    2.  Type-I adversary 1A  receives a set of public keys PK  and is allowed to make hash 

 queries and TagGen queries, adaptively. For TagGen queries, Type-I adversary 1A  
 sends ( , ),ii m  where i  is the index of the message block to be signed in the file ,F  to 
 the challenger .C  The challenger C  gives = ( , )i iTagGen SK mσ  to 1.A  

 
    3.  Finally, Type-I adversary 1A  outputs a forged pair of message and tag ( , , ).i m σ∗ ∗   

 
If the pair ( , , )i m σ∗ ∗  is a valid message and tag pair and m∗  has not been queried before, then 
Type-I adversary 1A  wins the game. 
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Definition 1. Type-I adversary 1( , , , )h tA t q q ε -breaks the public auditing scheme, if 1A  runs 
within a time of at most t , makes at most hq  hash queries, and tq  TagGen queries, and wins 
the game with the probability .ε  A public auditing scheme is tag-unforgeable, if no tag-forger 
( , , , )h tt q q ε -breaks the scheme with a non-negligible probability .ε  
 
Proof-Unforgeability. If Type-II adversary 2A  is not able to generate a valid proof for the 
blocks that are modified or deleted by Type-II adversary 2 ,A  then we say that a public 
auditing scheme satisfies proof-unforgeability. It is defined using the following game between 
a challenger C  and Type-II adversary 2.A  

  
    1.  The challenger C  runs KeyGen algorithm to generate the master key ,MK  a secret 

 key ,SK  and a set of public keys .PK  
 
    2.  Type-II adversary 2A  receives a set of public keys PK  and is allowed to make hash 

 queries and TagGen queries, adaptively. For TagGen queries, Type-II adversary 2A  
 sends ( , ),ii m  where i  is the index of the message block to the challenger .C  The 
 challenger C  responds with = ( , ).i iTagGen SK mσ  

 
    3.  The challenger C  generates the challenge message = ( ),CM Challenge PK  and sends 

 it to Type-II adversary 2.A  
 
    4.  Finally, Type-II adversary 2A  outputs a forged proof .P∗  

 
If the equation ( ) =Verify P Accept∗  holds and the challenge message CM  includes the index 
that is not queried in TagGen queries, then Type-II adversary 2A  wins the game. 
 
Definition 2. Type-II adversary 2 ( , , , )h tA t q q ε -breaks the public auditing scheme, if 2A  runs 
within a time of at most t , makes at most hq  hash queries, and tq  TagGen queries, and wins 
the game with the probability .ε  A public auditing scheme is proof-unforgeable, if no 
proof-forger ( , , , )h tt q q ε -breaks the scheme with a non-negligible probability .ε  

2.3 Preliminaries 
In this section, we describe some preliminaries which are widespread used in the field of 
cryptography.  
 
Bilinear Group. Let groups G  and 1G  be multiplicative cyclic groups with prime order .q  A 
function e  : 1G G G× →  is a bilinear map, if it satisfies the followings.   

    1.  We have ( , ) = ( , )a b abe g g e g g  for all ,g G∈  , .qa b ∗∈   
    2.  If g  is a generator of group ,G  then ( , )e g g  is a generator of group 1.G  
    3.  It is easy to compute ( , )a be g g  for all .g G∈  
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Table 1. Notaions in our scheme 
Notations Descriptions 

q  a prime order 
1,G G  multiplicative cyclic groups with prime order q  

1:e G G G× →  a bilinear map 
( , )spk ssk  a key pair of the signing algorithm 

,g u  generators of the group G  
0 ( 1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅  a file which is applied erasure code to a file F   

τ  a file tag = || || ( || )sskname n Sign name nτ  
name  a file name 

n  the number of blocks in the file 'F  
iσ  an authenticated tag for the block im  

i
fβ  a polynomial with a coefficient vector iβ



 

0 1= ( , ,..., )sω ω ω ω


 a coefficient vector of the resulting quotient polynomial 

[1, ]n  the numbers in a range 1 i n≤ ≤  
( ), ( )H H⋅ ⋅  collision resistance hash functions 

 
Computational Diffie-Hellman (CDH) Assumption. Given a tuple , , ,a bg g g G∈  an 
algorithm A  tries to compute .abg G∈  We assume that no algorithm A  has a non-negligible 
probability ε  such that  

 [ ( , , ) = ] ,a b abPr A g g g g ε≥                                                    (1) 
where the probability is selected over the random choice of ,g G∈  the random choice of 

, ,qa b ∗∈  and the random bits of .A  
   

 
Divisible Computational Diffie-Hellman (DCDH) Assumption [32]. Given a tuple 

, , ,a bg g g G∈  an algorithm A  tries to compute 
1

.a bg G
−
∈  We assume that no algorithm A  

has a non-negligible probability ε  such that  
 

1
[ ( , , ) = ] ,a b a bPr A g g g g ε

−
≥                                                 (2) 

where the probability is selected over the random choice of ,g G∈  the random choice of 
, ,qa b ∗∈  and the random bits of .A  

3. Review and Analysis of the Yuan and Yu’s scheme 
In this section, we briefly review the Yuan and Yu’s scheme in [28]. The details of the 
algorithms are as follows. 
KeyGen. Let G  and 1G  be multiplicative cyclic groups with prime order ,q and g and u  be 

generators of the group .G  Let  1:e G G G× →  be a bilinear map and  { }* *( ) : 0,1 qH Z⋅ →  be a 
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collision resistance hash function. TA randomly chooses qα ∗←  and computes 0 1{ }
j

j sgα
≤ ≤ +  

as public keys for the system. The data owner generates a key pair ( , )spk ssk  for the signing 
algorithm [33], where ( , ) . ().spk ssk Sign KeyGen←  The data owner also chooses ,qx ∗←  

and calculates = xv gα  and = .xgκ  The master key is = ,MK α  the set of public keys is 

0 1= ( , , , ,{ } , ),
j

j sPK g u q v gα κ≤ ≤ +  and the set of secret keys is = ( , )SK x ssk . 
TagGen. Let F ′  be a file obtained by applying an erasure code to a file ,F  where 

0 ( 1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅ . The data owner computes a file tag τ  and an authenticated tag iσ  
for each block im  as  

  

1 2 ( )
( || ) ( || )

=0

= ( ) = ( ) ,
s j fmH name i x H name i xij i

i
j

u g u g
αα βσ

− +

⋅ ⋅∏


                         (3) 

where = || || ( || ),sskname n Sign name nτ  0 1 ( 1)= (0,0, , ,..., )i i i i sm m mβ −



 and 
i

fβ  is a polynomial 

with a coefficient vector .iβ


 Then the data owner uploads the file tag τ  and the file 

1= { }i i nF m ≤ ≤′  with the corresponding authenticated tags 1{ }i i nσ ≤ ≤  to the server. 
Challenge. To check the integrity of ,F ′  TPA first retrieves the file tag τ  and verifies its 
validity. If τ  is valid, then TPA obtains ||name n  from τ ; otherwise, TPA sends fail  to the 
server. TPA randomly chooses a random number qr ∗←  and picks a k -elements subset K  
of [1, ].n  Then, TPA sends the challenge messages ( , )K r  to the server. 
Prove. Given the challenge message ( , ),K r  the server first computes =   i

ip r mod q  for all 

i K∈  and  = ( )  ,Ay f r mod q  where 0 ( 1)= (0,0, ,..., ).i i i i si K i K
A p m p m −∈ ∈∑ ∑


 The server 

computes 
( ) ( )

( ) = A Af z f r
f z

z rω

−

−

 

 , where 0 1= ( , ,..., )sω ω ω ω


 is the coefficient vector of the 

resulting quotient polynomial, and 
( )

=0
= ( ) = .

j w fs j
j

g g
αα ωψ ∏



 The server also computes the 

aggregated proof = pi
ii K

σ σ
∈∏  and then sends the proof ( , , )yσ ψ  to TPA. 

Verify. After receiving the proof ( , , ),yσ ψ  TPA checks the integrity of the file. TPA 
computes = ,uϑη  where = ( || ),ii K

p H name iϑ
∈∑  and checks the following equation  

 ( , ) ( , ) = ( , ) ( , ).r ye e v e g e gη κ ψ κ σ κ− −⋅ ⋅ ⋅                                   (4) 
If the equation holds, TPA outputs Accept ; otherwise TPA outputs .Reject  
Deduplication. Suppose that a user wants to store a file F ′  in the server and F ′ is stored in 
the server. To check that the user actually owns file ,F ′  the server selects k - elements the 
subset K  of [1, ]n  and requests the corresponding file blocks. After receiving the requests ,K  
the user responds with the corresponding file blocks im , for all .i K∈  Then the server 
computes  

 ( || )= ,  = ,H name i
i

i K i K

uσ σ η
∈ ∈

′ ′∏ ∏  
1 ( )

=2

= ( ( ) , ) = ( , ),
s j fj B

j

e g e g
β ααψ κ κ

+

′ ∏


              (5) 

where 0 ( 1)= (0,0, ,..., ),i i si K i K
B m m −∈ ∈∑ ∑


 and checks the following equation  
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 ( , ) = ( , ).e e gη κ ψ σ′ ′ ′⋅                                                        (6) 
If the equation holds, the server considers that the user owns the file .F ′  

3.1 Insecurity against Tag-Unforgeability 
In this section, we show that the Yuan and Yu’s scheme in [28] is not secure against a 
malicious server. Note that the schemes proposed in [17] and [28] use the same technique to 
generate the tags for the message, and the scheme in [17] is also not secure. Thus, we show that 
the malicious server can generate the valid tags for the modified messages using the valid pairs 
of message and tag. In their scheme, the data owner uses the same value u , although he 
generates the tag for different messages. Because of this vulnerability, the attacker can 
generate a valid tag for an arbitrary message without knowing the user’s secret key. The 
detailed attack process as follows.  

We assume that 1σ  and 2σ  are valid tags for the messages 1m  and 2 ,m  respectively, where 


( )
( ||1) 1

1 = ( )
f

H name xu g
α

βσ ⋅


 and 

( )
( ||2) 2

2 = ( ) .
f

H name xu g
α

βσ ⋅


 Using the public key ,PK  public 
values  ( ||1),  ( || 2),H name H name  and the stored original messages 1 2, ,m m  the server 
calculates 

 

 

1
2( ( ))1 2

( ) =01 1 2

2

= ,

s
j m m xj j

h h x ju g
α

σ
σ

−
+ − ⋅

− ⋅ ⋅
∑

                                                (7) 

 

1
2 ( )1 2

1 =0

1 1 2 1 2

2

( ) = ,

s
j m mj j

j x
h h h hxu g

α

σ
σ

−
+ −

⋅
− −⋅

∑
                                                 (8) 

 

1
2 ( )1 1 2

=01
1 1 2 1 1 2

2

( ) = ,

s
jh m mj j

h j x
h h h x h hu g

α

σ
σ

−
+⋅ −

⋅
− ⋅ −⋅

∑
                                             (9) 

 
2 1

10 1( 1)1
1 = ( ) ,

sm mh xsu g
α α

σ
∗ + ∗⋅ +⋅⋅⋅+ ⋅∗ −⋅                                                (10) 

where  

2 = ( || 2)h H name , and 1 1 2
1

1 2

( )
= j j

j

h m m
m

h h
∗ −

−
 for all 0 1j s≤ ≤ − . Then the value 1σ

∗  is 

a valid tag for the modified message 1 .m∗  
Another simple method can be used to attack the scheme. The attacker computes  

 

1
22 ( )2 2 1

11 =01 1
1 = ,

s
h jh h m xjhh x

h h ju g
α

σ

−
+⋅ ⋅

⋅ ⋅

⋅
∑

                                                    (11) 

 
2 1

20 2( 1)2
2 = ( ) ,

sm mh xsu g
α α

σ
∗ + ∗⋅ +⋅⋅⋅+ ⋅∗ −⋅                                                  (12) 

where 2
2 2

1

=j j
hm m
h

∗ ⋅  for all 0 1j s≤ ≤ − . Then the value 2σ
∗  is a valid tag for the modified 

message 2 .m∗  
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According to the attacks above, the server can generate valid tags for the modified messages 
without knowing the user’s secret keys, and thus the malicious server can cheat TPA into 
believing that the stored messages are intact without any modifications or deletions. 

4. Our Construction 
First, we propose the basic public auditing scheme without deduplication and prove its 
security in formal security models. Next, we extend the basic public auditing scheme to a 
public auditing scheme with deduplication.  

4.1 Basic Scheme without Deduplication 
In this section, we describe our basic public auditing scheme. The main difference with the 
previous works is a modification of the tag generation method. We modify TagGen algorithm 
to make it secure against the vulnerability by using t

iu h⋅  instead of ihu . In addition, we 
modify all parts of each algorithm which relates to the modification of TagGen algorithm, 
such as the set of public keys, the challenge messages, the proofs and the verification equation. 
These modifications enable the scheme to maintain constant computation costs and be well 
simulated in formal security proofs. Our basic scheme comprises the five algorithms; KeyGen, 
TagGen, Challenge, Prove, and Verify. The details of the algorithms are as follows. 
KeyGen. Let G  and 1G  be multiplicative cyclic groups with prime order ,q and g and u  be 

generators of the group .G  Let  1:e G G G× →  be a bilinear map and { }*
1( ) : 0,1H G⋅ →  be a 

collision resistance hash function. TA randomly chooses qα ∗←  and computes 0 1{ }
j

j sgα
≤ ≤ +  

as public keys for the system. The data owner generates a key pair ( , )spk ssk  for the signing 
algorithm [33], where ( , ) . ().spk ssk Sign KeyGen←  The data owner also chooses , qx t ∗← , 

and calculates = ,xv gα  = ,xtw g  and = .xgκ  The master key is = ,MK α  the set of public 

keys is 0 1= ( , , , , ,{ } , ),
j

j sPK g u q v w gα κ≤ ≤ +  and the set of secret keys is = ( , ).SK x ssk  
TagGen. Let F ′  be a file obtained by applying an erasure code to the file ,F  where 

0 ( 1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅ . The data owner computes a file tag τ  and an authenticated tag iσ  
for each block im  as  

 
1 2 ( )

=0

= ( ) = ( ) ,
s j fmt x t xij i

i i i
j

u h g u h g
αα βσ

− +

⋅ ⋅ ⋅ ⋅∏


                              (13) 

where = || || ( || ),sskname n Sign name nτ  = ( || ),ih H name i  0 1 ( 1)= (0,0, , ,..., )i i i i sm m mβ −



 and 

i
fβ  is a polynomial with a coefficient vector .iβ



 Then the data owner uploads the file tag τ  

and the file 1= { }i i nF m ≤ ≤′  to the server with the corresponding authenticated tags 1{ }i i nσ ≤ ≤ . 
Challenge. To check the integrity of ,F ′  TPA first retrieves the file tag τ  and verifies its 
validity. If τ  is valid, then TPA obtains ||name n  from τ ; otherwise, TPA sends a fail  
message to the server. TPA randomly chooses random numbers , qr R ∗←  and a k -elements 

subset K  of [1, ]n , and computes .Rg  Then, TPA sends the challenge messages ( , , )RK r g  to 
the server. 



2228                                                             Kim et al.: Provably-Secure Public Auditing with Deduplication 

Prove. Given the challenge message ( , , )RK r g , the server first computes =   i
ip r mod q  for 

all i K∈  and  = ( )  ,Ay f r mod q  where 0 (s 1)= (0,0, ,..., ).i i i ii K i K
A p m p m −∈ ∈∑ ∑


 The server 

calculates the polynomial 
( ) ( )

( ) = A Af z f r
f z

z rω

−

−

 

 , where 0 1= ( , ,..., )sω ω ω ω


 is the coefficient 

vector of the resulting quotient polynomial, and 
( )

=0
= ( ) =

j w fs j
j

g g
αα ωψ ∏



. To aggregate the 

tags for the challenged set ,K  the server finally computes = pi
ii K

hρ
∈∏  and 

= ( , ).p Ri
ii K

e gπ σ
∈∏  Then the server sends the proof ( , , , )yπ ψ ρ  to TPA. 

Verify. After receiving the proof ( , , , ),yπ ψ ρ  TPA checks the integrity of the file. TPA 
computes = ,Ruϑη  where = ii K

pϑ
∈∑ , and checks the following equation  

 ( , ) ( , ) ( , ) = ( , ).R R r y Re w e e v e gη ρ κ ψ κ π κ− −⋅ ⋅ ⋅ ⋅                            (14) 
If the equation holds, TPA outputs Accept ; otherwise TPA outputs .Reject  

The correctness of our scheme can be proved as follows.  
 ( , )y Re gπ κ −⋅  

 ( )= ( , ) ( , )p R x y Ri
i

i K

e g e g gσ −

∈

⋅∏  

 
( )

( )= ( ), ) ( , )
f

pt xR x y Ri i
i

i K

e u h g g e g g
α

β −

∈

⋅ ⋅ ⋅∏


 

 
( ) ( )

= (( ), ) ( , )
f pi f rtp p xR xRi i i A

i
i K

e u h g g e g g
α

β
⋅ −

∈

⋅ ⋅ ⋅∏




 

 
( ) ( )

= ( , )
f p f ri Aitp p xRi i i K

i
i K

e u h g g
α

β
⋅ −

∈

∈

⋅ ⋅
∑

∏
 

 

 
( ) ( )

= ( , )
f f rtp p xRi i A A

i
i K

e u h g g
α −

∈

⋅ ⋅∏
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 = ( , ) ( , ) ( , ).R R re w e e vη ρ κ ψ κ −⋅ ⋅ ⋅  

4.2 Security Analyses 
In this section, we show that our public auditing scheme is secure against existential 
forgery(by a Type-I adversary and Type-II adversary) under adaptive chosen message attacks. 
If the public auditing scheme satisfies tag-unforgeability and proof-unforgeability, then we 
can say that the scheme is secure against existential forgery. 
 
Theorem 4.1. Our public auditing scheme is secure against the tag-forgery(by a Type-I 
adversary) under chosen message attacks in the random oracle model, if the CDH assumption 
holds in .G  
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Proof of Theorem 4.1. Suppose that Type-I adversary 1A  is the forger that ( , , , )h tt q q ε -breaks 
our public auditing scheme by generating a valid pair of message and tag under user’s secret 
key. Then we can construct an algorithm B  that solves the CDH problem on .G  

Given ( , , )a bg g g G∈  as an input to the CDH problem, algorithm B  simulates the 
challenger and interacts with the forger 1A  in the tag-unforgeability game. 

  
    1.  The algorithm B  randomly picks *, , qt zα ←  and computes 0 1{ }

j

jgα
≤ ≤ + . The 

 algorithm B  sets = =x ag gκ  and = ,zu g  and computes = = ( )x av g gα α  and 
 = = ( )xt a tw g g . The algorithm B  gives PK  to the forger 1.A  

 
    2.  The algorithm B  simulates the hash oracles and the TagGen  oracle as follows. 
 (For hash oracle H ) At any time the forger 1A  is able to query the random hash 

 oracle H for || .name i  After receiving the hash queries, the algorithm B  stores 
 1 = ( , , , )i i iTab i c hδ  as generated below. 1Tab  is initially empty. When the forger 1A  
 queries || ,name i  the algorithm B  responds as follows.   

   (a) If 1i Tab∈/ , the algorithm B  flips a random coin {0,1}ic ∈  with a probability 
[ = 0] = 1/ ( 1)i tPr c q + , where tq  is the maximum number of TagGen queries. The 

algorithm B  picks a random number i qδ ∗∈  and computes the hash value 
(1 )= ( ) .cb i i

ih g gδ− ⋅  Then the algorithm B  updates the tuple 1 = ( , , , )i i iTab i c hδ  
and  responds with ( || ) = iH name i h  to the forger 1.A   

       (b) If 1i Tab∈ , the algorithm B  responds with ( || ) = iH name i h  in 1Tab .  
 
 (For TagGen oracle) At any time the forger 1A  can request a tag for ( , )ii m  to the 

 TagGen oracle. When the forger 1A  request ( , )ii m  to the TagGen oracle, the 
 algorithm B  responds as follows.   

(a) If 1i Tab∈/ , the algorithm B  chooses a random number i qδ ∗∈  and computes 
( )

= ( ) ( ) .
f

a ai i
i g g

α
δ βσ ⋅



 The algorithm B  responds with iσ  and stores the tuple 
2 = ( , , , , , ).i i i iTab i h mδ σ∗   

(b) If 1i Tab∈ , the algorithm B  retrieves the tuple ( , , , ).i i ii c hδ  If = 0,ic  then the 
algorithm B  reports a failure and terminates. If = 1ic , the algorithm B  computes 

( )

= ( ) ( )
f

a ai i
i g g

α
δ βσ ⋅



. The algorithm B  responds with iσ  and updates the tuple 
2 = ( , , , , , ).i i i i iTab i c h mδ σ   

 
    3.  Finally, the forger 1A  outputs the forged pair of message and tag ( , , )i ii m σ∗ ∗  such that 

 no TagGen query is issued for im∗ . B  checks whether the pair ( , )i im σ∗ ∗  is valid 
 under the given public keys PK . If ( , )i im σ∗ ∗  is not valid, the algorithm B  aborts. If 
 1i Tab∈  and = 0,ic  iσ

∗  satisfies the following equation  
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( ) ( ) ( )

= (( ) ) = ( ) ( ) ( ) = ( ) ( ) .
f f f

b b ztz t a a zt a a ab a ai i i i i i
i g g g g g g g g g

α α α
δ β δ β δ βσ + + +∗ ⋅ ⋅ ⋅ ⋅ ⋅

  

(16) 

  Then the algorithm B  outputs 
( )

= / (( ) ( ) )
f

ztab a ai i
ig g g

α
δ βσ +∗ ⋅



. 
 
First, we define three events to analyze B ’s success probability as follows.   
• 1E : During the TagGen queries made by the forger 1,A  the algorithm B  does not abort.  
• 2E : The forger 1A  outputs a valid pair of message and tag ( , , )i ii m σ∗ ∗ , which has not 

 queried before.  
• 3E : Event 2E  occurs and = 0ic  for the tuple containing i  in 1Tab .  

If all events occur, the algorithm B  can solve the CDH problem. Thus, the probability of 
success is 1 3[ ]Pr E E∧ , and we can compute it as  

 1 3 1 2 1 3 1 2[ ] = [ ] [ | ] [ | ].Pr E E Pr E Pr E E Pr E E E∧ ⋅ ⋅ ∧                         (17) 
We analyze the lower bounds of 1[ ]Pr E , 2 1[ | ]Pr E E , and 3 1 2[ | ]Pr E E E∧  in the following 
claims. 
 
Claim 1. The probability 1[ ]Pr E  that the algorithm B  does not abort during the TagGen 
queries made by the forger 1A  is at least 1 / .e   
 
Proof of Claim 1. We assume that the forger 1A  does not issue a query for the same index 
twice. In the TagGen oracle, the algorithm B  only aborts if = 0,ic  where ic  is the random 
value with the probability [ = 0] = 1/ ( 1)i tPr c q +  corresponding to the TagGen query i  in 

1Tab . Based on the probability of ic , the probability that the algorithm B  aborts is 
1 / ( 1).tq +  Therefore, the probability 1[ ]Pr E  that the algorithm B  does not abort is 
1 1 / ( 1)tq− +  for each TagGen query. The TagGen queries are issued tq  times at most, so the 
probability 1[ ]Pr E  that the algorithm B  does not abort during the forger 1A ’s TagGen 

queries is at least (1 1 / ( 1)) 1 / .qt
tq e− + ≥   

 
Claim 2. The probability 2 1[ | ]Pr E E  that the forger 1A  outputs a valid pair of message and 
tag under the condition that the event 1E  has occurred is at least .ε  

 
Proof of Claim 2. When the event 1E  occurs, the probability 2 1[ | ]Pr E E  depends on the 
information gathered by the forger 1.A  The views of 1A  in the simulation and the real game 
are identical as follows. 

  
• The distributions of PK  given to the forger 1A  in the simulation and the real game are 
identical. 
• The distributions of the hash values of the hash function in the simulation and the real 
game are identical. 
• The distributions of the responses to the TagGen oracle in the simulation and the real 
game are identical under the conditional probability.  

Thus, the forger 1A  will generate a valid pair of message and tag with a probability at least 
.ε  
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Claim 3. The probability 3 1 2[ | ]Pr E E E∧  that the algorithm B  does not abort after the forger 

1A  outputs a valid pair of message and tag is at least 1 / ( 1).tq +   
 

Proof of Claim 3. When the events 1E  and 2E  have occurred, the algorithm B  will abort only 
in the case that = 0ic  for the tuple containing i  corresponding to a forged pair of message 
and tag ( , , )i ii m σ∗ ∗  in 1Tab . Since the value ic  is randomly chosen with the probability 

[ = 0] = 1/ ( 1),i tPr c q +  the probability 3 1 2[ | ]Pr E E E∧  is at least 1 / ( 1).tq +   
According to the claims above, the success probability of B  is / ( ( 1)).te qε ⋅ +  Thus we can 

conclude that if the CDH assumption holds in ,G  no algorithm exists that breaks the 
tag-unforgeability of our scheme with a non-negligible probability.                                          

      
Theorem 4.2. Our public auditing scheme is secure against proof-forgery(by Type-II 
adversary) under chosen message attacks in the random oracle model, if the DCDH 
assumption holds in .G  
 
Proof of Theorem 4.2. Suppose that Type-II adversary 2A  is the proof forger that 
( , , , )h tt q q ε -breaks the public auditing scheme by generating a fake proof for an arbitrary 
message without tag-forgery, because we have already proven the tag-unforgeability in 
Theorem 4.1. Then we can construct an algorithm B  that solves the DCDH problem on .G  

Given ( , , )a bg g g  as an input for the DCDH problem, the algorithm B  simulates the 
challenger and interacts with the forger 2A  in the proof-unforgeability game. 

  
    1.  The algorithm B  randomly selects , qzα ∗←  and sets = = ,x ag gκ  0 1{ }

j

j sgα
≤ ≤ + , 

 = = ( ) ,x av g gα α  = = ,at bw g g  and = .zu g  The algorithm B  sends PK  to the 
 forger 2.A  

 
    2.  The algorithm B  simulates the hash oracle and the TagGen  oracle as follows. 
 (For hash oracle H ) At any time the forger 2A  is able to query the random hash 

 oracle h  for || .name i  After receiving the hash queries, the algorithm B   responds as 
 follows.   

 (a) If 1i Tab∈/ , the algorithm B  chooses a random number i qδ ∗∈  and sets = .i
ih gδ  

 Then the algorithm B  stores the tuple 1 = ( , , )i iTab i hδ  and responds with
 ( || ) = iH name i h  to the forger 2.A   

 (b) If 1i Tab∈ , then the algorithm B  responds with ( || ) = iH name i h  in 1Tab .  
 
 (For TagGen oracle) At any time the forger 2A  can request a tag for ( , )ii m  to the 

 TagGen oracle. When the forger 2A  asks ( , )ii m  to the TagGen oracle, the algorithm 
 B  responds as follows.   
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 (a) If 1i Tab∈/ , the algorithm B  chooses a random number i qδ ∗∈  and computes 

 
( )

= ( ) ( ) ( ) .
f

b z a ai i
i g g g

α
δ βσ ⋅ ⋅



 The algorithm B  responds with iσ  and stores the tuple 
 2 = ( , , , , ).i i i iTab i h mδ σ   

 (b) If 1,i Tab∈  the algorithm B  retrieves the tuple ( , , )i ii hδ  and computes 

 
( )

= ( ) ( ) ( ) .
f

b z a ai i
i g g g

α
δ βσ ⋅ ⋅



 The algorithm B  responds with iσ  and stores the tuple 
 2 = ( , , , , ).i i i iTab i h mδ σ  

 

3.  The algorithm B  chooses , qr R ∗←  and a random k -elements subset [1, ]K n⊂ , 

and computes .Rg  In this process, B  should choose a random subset that contains an 
index i  at least, where i  has not been queried before in the TagGen oracle.  Let dK  
be a subset of the set ,K  which comprises indices that have not been queried in 
TagGen oracle. Then the algorithm B  sends ( , , )RK r g  as the challenge message.  

 

    4.  Finally, if the forger 2A  outputs ( , , , )yπ ψ ρ∗  as the forged proof, the algorithm B  
 first checks the following equation  

 *( , ) ( , ) ( , ) = ( , ).R R r y Re w e e v e gη ρ κ ψ κ π κ− −⋅ ⋅ ⋅ ⋅                        (18) 

If the above equation holds, = ,
t pii K pd i

ii K
u hρ
−

∈∗
∈

⋅
∑

∏  since the forger 2A  can not generate 

a valid tag. Then the algorithm B  computes 
1a bg
−

 as follows:  

 

1

1
= ( ) .

z pi
i Ka b d

pi i
i K

g

g
δ

ρ

−

⋅
∗

− ∈

∈

∑
∑

                                                  (19) 

The success probability of B  is identical to the probability that the forger makes a valid 
proof forgery ( , , , )yπ ψ ρ∗ . We analyze the lower bounds of the success probability in the 
following claim. 

  
Claim 4. The success probability of B  is at least .ε  
 
Proof of Claim 4. During the simulation, there is no case that the simulation is aborted. 
Therefore, the success probability of B  depends on the probability that the forger makes a 
valid proof forgery. Thus the success probability of B  is at least .ε  

With the above claim, the algorithm B  solves the DCDH problem with the probability .ε  
Therefore, if the DCDH assumption holds, no algorithm exists that breaks the 
proof-unforgeability of our scheme with a non-negligible probability.  

4.3 Extended Scheme with Deduplication 
In this section, we describe the deduplication protocol for our public auditing scheme. When a 
user wishes to store a duplicated file, the server first checks the ownership of the file. If the 
user actually owns the file, the server gives access rights for the file to the user and deletes the 
duplicated files from the server. After the deduplication process, the users with valid rights to 
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access the file is also able to perform the auditing process. The details of the deduplication 
process as follows. 

Suppose that a user wants to store a file F ′  in the server and F ′  is stored in the server. To 
check that the user actually owns file ,F ′  the server selects a k -elements subset K  of [1, ]n  
and requests the corresponding file blocks. After receiving the requests ,K  the user responds 
with the corresponding file blocks ,im  for all .i K∈  Then the server computes  

 = , = ,i i
i K i K

hσ σ ρ
∈ ∈

′ ′∏ ∏  
1 ( )

=2

= ( ( ) , ) = ( , ),
s j fj B

j

e g e g
β ααψ κ κ

+

′ ∏


                (20) 

where 0 ( 1)= (0,0, ,..., )i i si K i K
B m m −∈ ∈∑ ∑


, and checks the following equation  
 ( , ) ( , ) = ( , ).e u w e e gρ κ ψ σ′ ′ ′⋅ ⋅                                            (21) 

 If the equation holds, the server considers that the user owns the file F ′  and gives the user 
access rights to file ,F ′  as follows. At first, let 0user  be the original user who uploaded file 

,F ′  user


 be a new user who passes the ownership check defined above, and ownerS  be a set of 
users with access rights to the same file ,F ′  where 1 S≤ ≤



  and S


 is the number of 
elements in the set .ownerS  To eliminate the duplicated files, the server computes an aggregated 
tag iσ ′  and stores only the aggregated tag iσ ′  instead of storing all the tags generated by the 
different users for the same file ,F ′  where  

 
( )

=0 =0

=0

= = ( ) .

S S

t x xS f
i

i i iu h g
α

βσ σ′ ⋅ ⋅
∑ ∑

∏

 

  



 





                                  (22) 

 When cuser  who belongs to the set ownerS  wants to audit the integrity of ,F ′  he runs 
Challenge algorithm and then sends ( , , )RK r g  as a challenge message to the server. On 
receiving the challenge message, the server computes =κ κ′ ∏ 

, =w w′ ∏ 

, and =v v′ ∏ 

, 
where / ,ownerS c∈  and runs the Prove algorithm to generate ( , , , ).yπ ψ ρ  The server sends 
( , , , , , , )y v wπ ψ ρ κ′ ′ ′  to cuser . Then cuser  can verify the proof for the challenged message by 
the following equation:  

 ( , ) ( , ) ( , ) = ( , ),R R r y R
ce w e e v v e gη ρ κ ψ κ π κ− −′⋅ ⋅ ⋅ ⋅ ⋅                          (23) 

where = cκ κ κ′ ⋅  and = .cw w w′ ⋅  If the equation holds, TPA outputs Accept ; otherwise TPA 
outputs .Reject  The correctness of the Equation (23) can be verified easily by extending the 
correctness of the Equation (15), so we omit the details. 
  

Table 2. Security and Complexity Comparison: Let Exp  and Pair  be the exponentiation operation 
and the bilinear pairing operation, respectively. s  is the number of sectors for the file block, d  is the 

number of challenged blocks, and L  is the number of users’ subgroup. 
   Computation Cost of TPA   Communication Cost   Tag-Unforgeability  

[27]   ( )O s Exp⋅  + (1)O Pair⋅    ( )O s d+    secure  
[28]   (1)O Exp⋅  + (1)O Pair⋅   (1)O   insecure 
[29]   ( )O d Exp⋅  + (1)O Pair⋅  ( )O s d+   secure  
[30]   ( )O d Exp⋅  + ( )O L Pair⋅   ( )O s d+   secure  
Ours   (1)O Exp⋅  + (1)O Pair⋅   (1)O    secure  
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4.4 Discussions 
 
Complexity Analysis. We compare the computation and communication costs of our scheme 
with those of related works in Table 2 [26,28,29,30]. As shown in Table 2, the scheme 
proposed in [28] has constant computation and communication costs, but the scheme is not 
secure against tag-forgery. By contrast, our scheme not only has constant computation and 
communication costs, but also is constructed secure against the tag-forgery.  
 
Batch-Auditing. Occasionally, TPA may handle many auditing tasks during a short period of 
time for multiple users. If TPA processes the auditing tasks one by one, long period of time is 
needed for their computation. To reduce the communication and computation costs, we can 
extend our scheme by using a technique similar to that proposed in [28] to support batch 
auditing, thereby processing many auditing tasks at the same time.  
 
Error Detection Probability. In our public auditing scheme, TPA requests a proof for a 
k -elements subset of the stored data blocks instead of all the data blocks in order to improve 
the efficiency of our scheme. Note that even though TPA uses the k  sampled blocks for the 
auditing, TPA can still detect the corrupted blocks with a high probability [4]. Suppose that 
1%  of all the blocks are corrupted. In such case, TPA can detect the modification of stored 
data blocks with a probability of 99%  or 95%  by choosing 460 or 360 challenge data blocks, 
respectively. If the user wishes to increase the detection probability for the same corrupted 
data blocks, TPA simply increases the number of the challenge data blocks, although this 
decreases the efficiency of the scheme. 

5. Conclusion 
In the paper, we pointed out that the Yuan and Yu’s public auditing scheme with deduplication 
is not secure against a tag-forgery by a malicious server, and we proposed an improved scheme 
which is secure and has the constant communication and computation costs. We also proved 
that our improved scheme satisfies the tag-unforgeability and the proof-unforgeability under 
the formal security models. 

To the best of our knowledge, no ID-based public auditing scheme which has constant 
computation cost and is proved under formal security model has been proposed. Therefore, it 
may be interesting to construct a provably-secure ID-based public auditing scheme which has 
constant computation costs. 
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