
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, Apr. 2017 2219
Copyright ⓒ2017 KSII

Provably-Secure Public Auditing with
Deduplication

Dongmin Kim and Ik Rae Jeong

CIST (Center for Information Security Technologies), Korea University
Anam-dong, Seongbuk-gu, Seoul 136-713, Korea

[e-mail: kkomang03@korea.ac.kr, irjeong@korea.ac.kr]
*Corresponding author: Ik Rae Jeong

Received August 29, 2016; revised December 5, 2016; revised January 21, 2017; accepted February 14, 2017;

published April 30, 2017

Abstract

With cloud storage services, users can handle an enormous amount of data in an efficient
manner. However, due to the widespread popularization of cloud storage, users have raised
concerns about the integrity of outsourced data, since they no longer possess the data locally.
To address these concerns, many auditing schemes have been proposed that allow users to
check the integrity of their outsourced data without retrieving it in full. Yuan and Yu proposed
a public auditing scheme with a deduplication property where the cloud server does not store
the duplicated data between users. In this paper, we analyze the weakness of the Yuan and
Yu’s scheme as well as present modifications which could improve the security of the scheme.
We also define two types of adversaries and prove that our proposed scheme is secure against
these adversaries under formal security models.

Keywords: Public auditing, deduplication, data integrity, tag-unforgeability,
proof-unforgebility

https://doi.org/10.3837/tiis.2017.04.021 ISSN : 1976-7277

2220 Kim et al.: Provably-Secure Public Auditing with Deduplication

1. Introduction

Cloud storage service allows users to outsource their data to a cloud server and access it
whenever necessary. Due to their widespread availability and convenience, cloud storage
services have become common in recent years, where diverse commercial products have been
released, such as Dropbox, Google Drive, and iCloud, which are used by numerous people and
enterprises [1-3].

Cloud storage services are convenient for data management and they have reduced the
burden of the management, but they also involve new security threats related to outsourced
data in terms of the integrity of the data. Data are stored remotely in a cloud server, so users are
unable to be certain that their data are stored in full without any modifications. Thus, after the
users outsource their data to the server, the server may delete or not store the data in full in
order to make a profit by saving on storage costs. In order to detect such misbehaviors by the
storage service provider, many studies have proposed methods for integrity checking without
downloading the data in full [4-11].

Ateniese et al. first proposed the concept of public verifiability and a public auditing scheme
called provable data possession, which uses the RSA-based homomorphic verifiable tag to
generate a tag for each block of data [4]. The tag allows users to check whether the server
contains the data blocks, but this incurs high costs in terms of server computation and
communication. Juels and Kaliski also proposed a new scheme called Proof of Retrievability
(POR) which allows the integrity of the remotely stored data to be checked as well as the
retrievability of the data by applying the error-correcting codes [5]. However, this method also
incurs high computational overheads on the client side. Shacham and Waters proposed a more
efficient and compact POR scheme [7] that uses the BLS short signature, they proved that this
scheme is secure under the security model defined by Juels and Kaliski [5], but it does not
ensure the confidentiality of the file blocks. Thus, the user data may be revealed to a public
verifier; called a third party auditor (TPA); who checks the integrity of outsourced data in the
cloud on behalf of the users. Wang et al. first proposed a privacy-preserving public auditing
scheme, which ensures the confidentiality of the file blocks [11]. Subsequently, many
solutions have been proposed with various properties, such as identity privacy, traceability,
and key updates, in addition to public verifiability and privacy-preserving property [12-25].

Zheng and Xu proposed a public auditing scheme with deduplication, which makes the
server store only a single copy of each file (or block) to save the storage costs in a legitimate
manner [26]. However, Shin et al. showed that the scheme proposed by Zheng and Xu is not
secure against a weak key attack and they modified it to make it secure against this type of
attack [27]. Yuan and Yu also proposed a public auditing scheme with deduplication, which
has constant communication and computation costs of TPA [28]. Li et al. proposed two secure
systems called SecCloud and SecCloud+ to ensure data integrity and deduplication in the
cloud [29]. SecCloud+ allows integrity auditing and data deduplication on the encrypted data
because of the deterministic encryption property in convergent encryption. Alkhojandi and
Miri also proposed privacy-preserving public auditing scheme with deduplication, which
ensures that TPA cannot learn any information about the stored data [30]. Unfortunately, most
schemes, except for the scheme proposed by Yuan and Yu, are not efficiently constructed
since computation costs of TPA are affected by the number of challenged blocks. In other
words, they have computation costs of O(k) when performing the auditing process, where k is
the number of challenged blocks. Recently, He et al. introduced the concept of deduplicatable

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2221

dynamic proof of storage and proposed an efficient construction that uses homomorphic
authenticated tree, but their scheme does not ensure public verifiability [31]. For that reason,
we mainly analyze Yuan and Yu’s scheme which is the most efficient in terms of computation
and communication costs of TPA.

In the paper, we show that Yuan and Yu’s scheme is not secure against a malicious server
and propose a new secure scheme with constant communication and computation costs. We
also define two types of adversaries and prove that our scheme is secure against these
adversaries under formal security models.

The rest of paper is organized as follows. In Section 2, we describe the formal security
models and review some preliminaries. We demonstrate the insecurity of Yuan and Yu’s
scheme in Section 3. In Section 4, we construct our scheme and prove its security. We give our
conclusion in Section 5.

2. Models and Preliminaries

2.1 System Model
We consider a system model with four entities, i.e., trust authority (TA), data owner, cloud
server, and the third party auditor (TPA) as shown in Fig. 1. TA generates a master key and a
set of public keys for the system, but does not participate in any other process. A data owner
has a collection of data and outsources them to the cloud server with authenticated tags
corresponding to each block of data files. When the data owner wishes to check the integrity of
their outsourced data, TPA performs the integrity checking on behalf of the data owner. To
check the integrity of the data, TPA sends a challenge message to the cloud server. After
receiving the challenge message, the cloud server generates a valid proof for the selected
blocks and responds to TPA. Next, TPA verifies the validity of the received proof. We define
the algorithms for our public auditing scheme as follows.

Fig. 1. System model for public auditing with deduplication

2222 Kim et al.: Provably-Secure Public Auditing with Deduplication

• KeyGen takes a security parameter and returns the master key MK , a set of public keys
 PK for the system and a secret key SK for a user.

• TagGen takes as inputs the set of public keys PK , a secret key SK of a user, and a file
 1= (,...,)nF m m , where n is the number of the file blocks. It outputs tags 1{ }i i nσ ≤ ≤ for
 the file blocks.

• Challenge takes the set of public keys PK as an input and returns a challenge message
 .CM

• Prove takes as inputs the set of public keys ,PK the challenge message ,CM and the
 pairs of message and tag 1{ , }i i i nm σ ≤ ≤ . It outputs a proof P for the challenge message
 .CM

• Verify takes as inputs the set of public keys ,PK the challenge message ,CM and the
 proof .P It outputs Accept or .Reject

• Deduplication is an interactive protocol between a user and the cloud server for verifying
that the user and the cloud have the same data.

2.2 Security Model
In this section, we first introduce our new security models in the public auditing scheme. We
assume that there are two types of adversaries in our public auditing scheme, i.e., Type-I
adversary 1A and Type-II adversary 2.A 1A can acquire valid pairs of message and tag, and
generate a forged pair of message and tag without knowing the secret key of the user. 2A can
also acquire valid pairs of message and tag, and generate a forged proof for the challenged
message without tag-forgery. We define new security models, tag-unforgeability and
proof-unforgeability, using the game between a challenger and Type-I adversary 1A and
Type-II adversary 2A , respectively, as follows,.

Tag-Unforgeability. If a valid tag is not able to be generated by Type-I adversary 1,A then we
consider that a public auditing scheme satisfies tag-unforgeability. It is defined using the
following game between a challenger C and Type-I adversary 1.A

 1. The challenger C runs KeyGen algorithm to generate the master key ,MK a secret

 key ,SK and a set of public keys PK , and then gives PK to Type-I adversary 1.A

 2. Type-I adversary 1A receives a set of public keys PK and is allowed to make hash

 queries and TagGen queries, adaptively. For TagGen queries, Type-I adversary 1A
 sends (,),ii m where i is the index of the message block to be signed in the file ,F to
 the challenger .C The challenger C gives = (,)i iTagGen SK mσ to 1.A

 3. Finally, Type-I adversary 1A outputs a forged pair of message and tag (, ,).i m σ∗ ∗

If the pair (, ,)i m σ∗ ∗ is a valid message and tag pair and m∗ has not been queried before, then
Type-I adversary 1A wins the game.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2223

Definition 1. Type-I adversary 1(, , ,)h tA t q q ε -breaks the public auditing scheme, if 1A runs
within a time of at most t , makes at most hq hash queries, and tq TagGen queries, and wins
the game with the probability .ε A public auditing scheme is tag-unforgeable, if no tag-forger
(, , ,)h tt q q ε -breaks the scheme with a non-negligible probability .ε

Proof-Unforgeability. If Type-II adversary 2A is not able to generate a valid proof for the
blocks that are modified or deleted by Type-II adversary 2 ,A then we say that a public
auditing scheme satisfies proof-unforgeability. It is defined using the following game between
a challenger C and Type-II adversary 2.A

 1. The challenger C runs KeyGen algorithm to generate the master key ,MK a secret

 key ,SK and a set of public keys .PK

 2. Type-II adversary 2A receives a set of public keys PK and is allowed to make hash

 queries and TagGen queries, adaptively. For TagGen queries, Type-II adversary 2A
 sends (,),ii m where i is the index of the message block to the challenger .C The
 challenger C responds with = (,).i iTagGen SK mσ

 3. The challenger C generates the challenge message = (),CM Challenge PK and sends

 it to Type-II adversary 2.A

 4. Finally, Type-II adversary 2A outputs a forged proof .P∗

If the equation () =Verify P Accept∗ holds and the challenge message CM includes the index
that is not queried in TagGen queries, then Type-II adversary 2A wins the game.

Definition 2. Type-II adversary 2 (, , ,)h tA t q q ε -breaks the public auditing scheme, if 2A runs
within a time of at most t , makes at most hq hash queries, and tq TagGen queries, and wins
the game with the probability .ε A public auditing scheme is proof-unforgeable, if no
proof-forger (, , ,)h tt q q ε -breaks the scheme with a non-negligible probability .ε

2.3 Preliminaries
In this section, we describe some preliminaries which are widespread used in the field of
cryptography.

Bilinear Group. Let groups G and 1G be multiplicative cyclic groups with prime order .q A
function e : 1G G G× → is a bilinear map, if it satisfies the followings.

 1. We have (,) = (,)a b abe g g e g g for all ,g G∈ , .qa b ∗∈
 2. If g is a generator of group ,G then (,)e g g is a generator of group 1.G
 3. It is easy to compute (,)a be g g for all .g G∈

2224 Kim et al.: Provably-Secure Public Auditing with Deduplication

Table 1. Notaions in our scheme
Notations Descriptions

q a prime order
1,G G multiplicative cyclic groups with prime order q

1:e G G G× → a bilinear map
(,)spk ssk a key pair of the signing algorithm

,g u generators of the group G
0 (1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅ a file which is applied erasure code to a file F

τ a file tag = || || (||)sskname n Sign name nτ
name a file name

n the number of blocks in the file 'F
iσ an authenticated tag for the block im

i
fβ a polynomial with a coefficient vector iβ

0 1= (, ,...,)sω ω ω ω

 a coefficient vector of the resulting quotient polynomial

[1,]n the numbers in a range 1 i n≤ ≤
(), ()H H⋅ ⋅ collision resistance hash functions

Computational Diffie-Hellman (CDH) Assumption. Given a tuple , , ,a bg g g G∈ an
algorithm A tries to compute .abg G∈ We assume that no algorithm A has a non-negligible
probability ε such that

 [(, ,) =] ,a b abPr A g g g g ε≥ (1)
where the probability is selected over the random choice of ,g G∈ the random choice of

, ,qa b ∗∈ and the random bits of .A

Divisible Computational Diffie-Hellman (DCDH) Assumption [32]. Given a tuple

, , ,a bg g g G∈ an algorithm A tries to compute
1

.a bg G
−
∈ We assume that no algorithm A

has a non-negligible probability ε such that

1
[(, ,) =] ,a b a bPr A g g g g ε

−
≥ (2)

where the probability is selected over the random choice of ,g G∈ the random choice of
, ,qa b ∗∈ and the random bits of .A

3. Review and Analysis of the Yuan and Yu’s scheme
In this section, we briefly review the Yuan and Yu’s scheme in [28]. The details of the
algorithms are as follows.
KeyGen. Let G and 1G be multiplicative cyclic groups with prime order ,q and g and u be

generators of the group .G Let 1:e G G G× → be a bilinear map and { }* *() : 0,1 qH Z⋅ → be a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2225

collision resistance hash function. TA randomly chooses qα ∗← and computes 0 1{ }
j

j sgα
≤ ≤ +

as public keys for the system. The data owner generates a key pair (,)spk ssk for the signing
algorithm [33], where (,) . ().spk ssk Sign KeyGen← The data owner also chooses ,qx ∗←

and calculates = xv gα and = .xgκ The master key is = ,MK α the set of public keys is

0 1= (, , , ,{ } ,),
j

j sPK g u q v gα κ≤ ≤ + and the set of secret keys is = (,)SK x ssk .
TagGen. Let F ′ be a file obtained by applying an erasure code to a file ,F where

0 (1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅ . The data owner computes a file tag τ and an authenticated tag iσ
for each block im as

1 2 ()
(||) (||)

=0

= () = () ,
s j fmH name i x H name i xij i

i
j

u g u g
αα βσ

− +

⋅ ⋅∏

 (3)

where = || || (||),sskname n Sign name nτ 0 1 (1)= (0,0, , ,...,)i i i i sm m mβ −

 and
i

fβ is a polynomial

with a coefficient vector .iβ

 Then the data owner uploads the file tag τ and the file

1= { }i i nF m ≤ ≤′ with the corresponding authenticated tags 1{ }i i nσ ≤ ≤ to the server.
Challenge. To check the integrity of ,F ′ TPA first retrieves the file tag τ and verifies its
validity. If τ is valid, then TPA obtains ||name n from τ ; otherwise, TPA sends fail to the
server. TPA randomly chooses a random number qr ∗← and picks a k -elements subset K
of [1,].n Then, TPA sends the challenge messages (,)K r to the server.
Prove. Given the challenge message (,),K r the server first computes = i

ip r mod q for all

i K∈ and = () ,Ay f r mod q where 0 (1)= (0,0, ,...,).i i i i si K i K
A p m p m −∈ ∈∑ ∑

 The server

computes
() ()

() = A Af z f r
f z

z rω

−

−

 , where 0 1= (, ,...,)sω ω ω ω

 is the coefficient vector of the

resulting quotient polynomial, and
()

=0
= () = .

j w fs j
j

g g
αα ωψ ∏

 The server also computes the

aggregated proof = pi
ii K

σ σ
∈∏ and then sends the proof (, ,)yσ ψ to TPA.

Verify. After receiving the proof (, ,),yσ ψ TPA checks the integrity of the file. TPA
computes = ,uϑη where = (||),ii K

p H name iϑ
∈∑ and checks the following equation

 (,) (,) = (,) (,).r ye e v e g e gη κ ψ κ σ κ− −⋅ ⋅ ⋅ (4)
If the equation holds, TPA outputs Accept ; otherwise TPA outputs .Reject
Deduplication. Suppose that a user wants to store a file F ′ in the server and F ′ is stored in
the server. To check that the user actually owns file ,F ′ the server selects k - elements the
subset K of [1,]n and requests the corresponding file blocks. After receiving the requests ,K
the user responds with the corresponding file blocks im , for all .i K∈ Then the server
computes

 (||)= , = ,H name i
i

i K i K

uσ σ η
∈ ∈

′ ′∏ ∏
1 ()

=2

= (() ,) = (,),
s j fj B

j

e g e g
β ααψ κ κ

+

′ ∏

 (5)

where 0 (1)= (0,0, ,...,),i i si K i K
B m m −∈ ∈∑ ∑

 and checks the following equation

2226 Kim et al.: Provably-Secure Public Auditing with Deduplication

 (,) = (,).e e gη κ ψ σ′ ′ ′⋅ (6)
If the equation holds, the server considers that the user owns the file .F ′

3.1 Insecurity against Tag-Unforgeability
In this section, we show that the Yuan and Yu’s scheme in [28] is not secure against a
malicious server. Note that the schemes proposed in [17] and [28] use the same technique to
generate the tags for the message, and the scheme in [17] is also not secure. Thus, we show that
the malicious server can generate the valid tags for the modified messages using the valid pairs
of message and tag. In their scheme, the data owner uses the same value u , although he
generates the tag for different messages. Because of this vulnerability, the attacker can
generate a valid tag for an arbitrary message without knowing the user’s secret key. The
detailed attack process as follows.

We assume that 1σ and 2σ are valid tags for the messages 1m and 2 ,m respectively, where

()
(||1) 1

1 = ()
f

H name xu g
α

βσ ⋅

 and

()
(||2) 2

2 = () .
f

H name xu g
α

βσ ⋅

 Using the public key ,PK public
values (||1), (|| 2),H name H name and the stored original messages 1 2, ,m m the server
calculates

1
2(())1 2

() =01 1 2

2

= ,

s
j m m xj j

h h x ju g
α

σ
σ

−
+ − ⋅

− ⋅ ⋅
∑

 (7)

1
2 ()1 2

1 =0

1 1 2 1 2

2

() = ,

s
j m mj j

j x
h h h hxu g

α

σ
σ

−
+ −

⋅
− −⋅

∑
 (8)

1
2 ()1 1 2

=01
1 1 2 1 1 2

2

() = ,

s
jh m mj j

h j x
h h h x h hu g

α

σ
σ

−
+⋅ −

⋅
− ⋅ −⋅

∑
 (9)

2 1

10 1(1)1
1 = () ,

sm mh xsu g
α α

σ
∗ + ∗⋅ +⋅⋅⋅+ ⋅∗ −⋅ (10)

where

2 = (|| 2)h H name , and 1 1 2
1

1 2

()
= j j

j

h m m
m

h h
∗ −

−
 for all 0 1j s≤ ≤ − . Then the value 1σ

∗ is

a valid tag for the modified message 1 .m∗
Another simple method can be used to attack the scheme. The attacker computes

1
22 ()2 2 1

11 =01 1
1 = ,

s
h jh h m xjhh x

h h ju g
α

σ

−
+⋅ ⋅

⋅ ⋅

⋅
∑

 (11)

2 1

20 2(1)2
2 = () ,

sm mh xsu g
α α

σ
∗ + ∗⋅ +⋅⋅⋅+ ⋅∗ −⋅ (12)

where 2
2 2

1

=j j
hm m
h

∗ ⋅ for all 0 1j s≤ ≤ − . Then the value 2σ
∗ is a valid tag for the modified

message 2 .m∗

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2227

According to the attacks above, the server can generate valid tags for the modified messages
without knowing the user’s secret keys, and thus the malicious server can cheat TPA into
believing that the stored messages are intact without any modifications or deletions.

4. Our Construction
First, we propose the basic public auditing scheme without deduplication and prove its
security in formal security models. Next, we extend the basic public auditing scheme to a
public auditing scheme with deduplication.

4.1 Basic Scheme without Deduplication
In this section, we describe our basic public auditing scheme. The main difference with the
previous works is a modification of the tag generation method. We modify TagGen algorithm
to make it secure against the vulnerability by using t

iu h⋅ instead of ihu . In addition, we
modify all parts of each algorithm which relates to the modification of TagGen algorithm,
such as the set of public keys, the challenge messages, the proofs and the verification equation.
These modifications enable the scheme to maintain constant computation costs and be well
simulated in formal security proofs. Our basic scheme comprises the five algorithms; KeyGen,
TagGen, Challenge, Prove, and Verify. The details of the algorithms are as follows.
KeyGen. Let G and 1G be multiplicative cyclic groups with prime order ,q and g and u be

generators of the group .G Let 1:e G G G× → be a bilinear map and { }*
1() : 0,1H G⋅ → be a

collision resistance hash function. TA randomly chooses qα ∗← and computes 0 1{ }
j

j sgα
≤ ≤ +

as public keys for the system. The data owner generates a key pair (,)spk ssk for the signing
algorithm [33], where (,) . ().spk ssk Sign KeyGen← The data owner also chooses , qx t ∗← ,

and calculates = ,xv gα = ,xtw g and = .xgκ The master key is = ,MK α the set of public

keys is 0 1= (, , , , ,{ } ,),
j

j sPK g u q v w gα κ≤ ≤ + and the set of secret keys is = (,).SK x ssk
TagGen. Let F ′ be a file obtained by applying an erasure code to the file ,F where

0 (1) 1= { , , }i i s i nF m m − ≤ ≤′ ⋅ ⋅ ⋅ . The data owner computes a file tag τ and an authenticated tag iσ
for each block im as

1 2 ()

=0

= () = () ,
s j fmt x t xij i

i i i
j

u h g u h g
αα βσ

− +

⋅ ⋅ ⋅ ⋅∏

 (13)

where = || || (||),sskname n Sign name nτ = (||),ih H name i 0 1 (1)= (0,0, , ,...,)i i i i sm m mβ −

 and

i
fβ is a polynomial with a coefficient vector .iβ

 Then the data owner uploads the file tag τ

and the file 1= { }i i nF m ≤ ≤′ to the server with the corresponding authenticated tags 1{ }i i nσ ≤ ≤ .
Challenge. To check the integrity of ,F ′ TPA first retrieves the file tag τ and verifies its
validity. If τ is valid, then TPA obtains ||name n from τ ; otherwise, TPA sends a fail
message to the server. TPA randomly chooses random numbers , qr R ∗← and a k -elements

subset K of [1,]n , and computes .Rg Then, TPA sends the challenge messages (, ,)RK r g to
the server.

2228 Kim et al.: Provably-Secure Public Auditing with Deduplication

Prove. Given the challenge message (, ,)RK r g , the server first computes = i
ip r mod q for

all i K∈ and = () ,Ay f r mod q where 0 (s 1)= (0,0, ,...,).i i i ii K i K
A p m p m −∈ ∈∑ ∑

 The server

calculates the polynomial
() ()

() = A Af z f r
f z

z rω

−

−

 , where 0 1= (, ,...,)sω ω ω ω

 is the coefficient

vector of the resulting quotient polynomial, and
()

=0
= () =

j w fs j
j

g g
αα ωψ ∏

. To aggregate the

tags for the challenged set ,K the server finally computes = pi
ii K

hρ
∈∏ and

= (,).p Ri
ii K

e gπ σ
∈∏ Then the server sends the proof (, , ,)yπ ψ ρ to TPA.

Verify. After receiving the proof (, , ,),yπ ψ ρ TPA checks the integrity of the file. TPA
computes = ,Ruϑη where = ii K

pϑ
∈∑ , and checks the following equation

 (,) (,) (,) = (,).R R r y Re w e e v e gη ρ κ ψ κ π κ− −⋅ ⋅ ⋅ ⋅ (14)
If the equation holds, TPA outputs Accept ; otherwise TPA outputs .Reject

The correctness of our scheme can be proved as follows.
 (,)y Re gπ κ −⋅

 ()= (,) (,)p R x y Ri
i

i K

e g e g gσ −

∈

⋅∏

()

()= (),) (,)
f

pt xR x y Ri i
i

i K

e u h g g e g g
α

β −

∈

⋅ ⋅ ⋅∏

() ()

= ((),) (,)
f pi f rtp p xR xRi i i A

i
i K

e u h g g e g g
α

β
⋅ −

∈

⋅ ⋅ ⋅∏

() ()

= (,)
f p f ri Aitp p xRi i i K

i
i K

e u h g g
α

β
⋅ −

∈

∈

⋅ ⋅
∑

∏

() ()

= (,)
f f rtp p xRi i A A

i
i K

e u h g g
α −

∈

⋅ ⋅∏

 (15)

() ()

= (,)
f rtp p xRi i

i
i K

e u h g g
α α

ω
⋅ −

∈

⋅ ⋅∏

() ()= (,) (,)

f Rtp p xR x x ri i
i

i K

e u h g e g g g
α αω −

∈

⋅ ⋅ ⋅∏

 = (,) (,) (,)tp pxR xR R ri i
i

i K i K

e u g e h g e vψ κ −

∈ ∈

⋅ ⋅ ⋅∏ ∏

 = (,) (,) (,).R R re w e e vη ρ κ ψ κ −⋅ ⋅ ⋅

4.2 Security Analyses
In this section, we show that our public auditing scheme is secure against existential
forgery(by a Type-I adversary and Type-II adversary) under adaptive chosen message attacks.
If the public auditing scheme satisfies tag-unforgeability and proof-unforgeability, then we
can say that the scheme is secure against existential forgery.

Theorem 4.1. Our public auditing scheme is secure against the tag-forgery(by a Type-I
adversary) under chosen message attacks in the random oracle model, if the CDH assumption
holds in .G

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2229

Proof of Theorem 4.1. Suppose that Type-I adversary 1A is the forger that (, , ,)h tt q q ε -breaks
our public auditing scheme by generating a valid pair of message and tag under user’s secret
key. Then we can construct an algorithm B that solves the CDH problem on .G

Given (, ,)a bg g g G∈ as an input to the CDH problem, algorithm B simulates the
challenger and interacts with the forger 1A in the tag-unforgeability game.

 1. The algorithm B randomly picks *, , qt zα ← and computes 0 1{ }

j

jgα
≤ ≤ + . The

 algorithm B sets = =x ag gκ and = ,zu g and computes = = ()x av g gα α and
 = = ()xt a tw g g . The algorithm B gives PK to the forger 1.A

 2. The algorithm B simulates the hash oracles and the TagGen oracle as follows.
 (For hash oracle H) At any time the forger 1A is able to query the random hash

 oracle H for || .name i After receiving the hash queries, the algorithm B stores
 1 = (, , ,)i i iTab i c hδ as generated below. 1Tab is initially empty. When the forger 1A
 queries || ,name i the algorithm B responds as follows.

 (a) If 1i Tab∈/ , the algorithm B flips a random coin {0,1}ic ∈ with a probability
[= 0] = 1/ (1)i tPr c q + , where tq is the maximum number of TagGen queries. The

algorithm B picks a random number i qδ ∗∈ and computes the hash value
(1)= () .cb i i

ih g gδ− ⋅ Then the algorithm B updates the tuple 1 = (, , ,)i i iTab i c hδ
and responds with (||) = iH name i h to the forger 1.A

 (b) If 1i Tab∈ , the algorithm B responds with (||) = iH name i h in 1Tab .

 (For TagGen oracle) At any time the forger 1A can request a tag for (,)ii m to the

 TagGen oracle. When the forger 1A request (,)ii m to the TagGen oracle, the
 algorithm B responds as follows.

(a) If 1i Tab∈/ , the algorithm B chooses a random number i qδ ∗∈ and computes
()

= () () .
f

a ai i
i g g

α
δ βσ ⋅

 The algorithm B responds with iσ and stores the tuple
2 = (, , , , ,).i i i iTab i h mδ σ∗

(b) If 1i Tab∈ , the algorithm B retrieves the tuple (, , ,).i i ii c hδ If = 0,ic then the
algorithm B reports a failure and terminates. If = 1ic , the algorithm B computes

()

= () ()
f

a ai i
i g g

α
δ βσ ⋅

. The algorithm B responds with iσ and updates the tuple
2 = (, , , , ,).i i i i iTab i c h mδ σ

 3. Finally, the forger 1A outputs the forged pair of message and tag (, ,)i ii m σ∗ ∗ such that

 no TagGen query is issued for im∗ . B checks whether the pair (,)i im σ∗ ∗ is valid
 under the given public keys PK . If (,)i im σ∗ ∗ is not valid, the algorithm B aborts. If
 1i Tab∈ and = 0,ic iσ

∗ satisfies the following equation

2230 Kim et al.: Provably-Secure Public Auditing with Deduplication

() () ()

= (()) = () () () = () () .
f f f

b b ztz t a a zt a a ab a ai i i i i i
i g g g g g g g g g

α α α
δ β δ β δ βσ + + +∗ ⋅ ⋅ ⋅ ⋅ ⋅

(16)

 Then the algorithm B outputs
()

= / (() ())
f

ztab a ai i
ig g g

α
δ βσ +∗ ⋅

.

First, we define three events to analyze B ’s success probability as follows.
• 1E : During the TagGen queries made by the forger 1,A the algorithm B does not abort.
• 2E : The forger 1A outputs a valid pair of message and tag (, ,)i ii m σ∗ ∗ , which has not

 queried before.
• 3E : Event 2E occurs and = 0ic for the tuple containing i in 1Tab .

If all events occur, the algorithm B can solve the CDH problem. Thus, the probability of
success is 1 3[]Pr E E∧ , and we can compute it as

 1 3 1 2 1 3 1 2[] = [] [|] [|].Pr E E Pr E Pr E E Pr E E E∧ ⋅ ⋅ ∧ (17)
We analyze the lower bounds of 1[]Pr E , 2 1[|]Pr E E , and 3 1 2[|]Pr E E E∧ in the following
claims.

Claim 1. The probability 1[]Pr E that the algorithm B does not abort during the TagGen
queries made by the forger 1A is at least 1 / .e

Proof of Claim 1. We assume that the forger 1A does not issue a query for the same index
twice. In the TagGen oracle, the algorithm B only aborts if = 0,ic where ic is the random
value with the probability [= 0] = 1/ (1)i tPr c q + corresponding to the TagGen query i in

1Tab . Based on the probability of ic , the probability that the algorithm B aborts is
1 / (1).tq + Therefore, the probability 1[]Pr E that the algorithm B does not abort is
1 1 / (1)tq− + for each TagGen query. The TagGen queries are issued tq times at most, so the
probability 1[]Pr E that the algorithm B does not abort during the forger 1A ’s TagGen

queries is at least (1 1 / (1)) 1 / .qt
tq e− + ≥

Claim 2. The probability 2 1[|]Pr E E that the forger 1A outputs a valid pair of message and
tag under the condition that the event 1E has occurred is at least .ε

Proof of Claim 2. When the event 1E occurs, the probability 2 1[|]Pr E E depends on the
information gathered by the forger 1.A The views of 1A in the simulation and the real game
are identical as follows.

• The distributions of PK given to the forger 1A in the simulation and the real game are
identical.
• The distributions of the hash values of the hash function in the simulation and the real
game are identical.
• The distributions of the responses to the TagGen oracle in the simulation and the real
game are identical under the conditional probability.

Thus, the forger 1A will generate a valid pair of message and tag with a probability at least
.ε

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2231

Claim 3. The probability 3 1 2[|]Pr E E E∧ that the algorithm B does not abort after the forger

1A outputs a valid pair of message and tag is at least 1 / (1).tq +

Proof of Claim 3. When the events 1E and 2E have occurred, the algorithm B will abort only
in the case that = 0ic for the tuple containing i corresponding to a forged pair of message
and tag (, ,)i ii m σ∗ ∗ in 1Tab . Since the value ic is randomly chosen with the probability

[= 0] = 1/ (1),i tPr c q + the probability 3 1 2[|]Pr E E E∧ is at least 1 / (1).tq +
According to the claims above, the success probability of B is / ((1)).te qε ⋅ + Thus we can

conclude that if the CDH assumption holds in ,G no algorithm exists that breaks the
tag-unforgeability of our scheme with a non-negligible probability.

Theorem 4.2. Our public auditing scheme is secure against proof-forgery(by Type-II
adversary) under chosen message attacks in the random oracle model, if the DCDH
assumption holds in .G

Proof of Theorem 4.2. Suppose that Type-II adversary 2A is the proof forger that
(, , ,)h tt q q ε -breaks the public auditing scheme by generating a fake proof for an arbitrary
message without tag-forgery, because we have already proven the tag-unforgeability in
Theorem 4.1. Then we can construct an algorithm B that solves the DCDH problem on .G

Given (, ,)a bg g g as an input for the DCDH problem, the algorithm B simulates the
challenger and interacts with the forger 2A in the proof-unforgeability game.

 1. The algorithm B randomly selects , qzα ∗← and sets = = ,x ag gκ 0 1{ }

j

j sgα
≤ ≤ + ,

 = = () ,x av g gα α = = ,at bw g g and = .zu g The algorithm B sends PK to the
 forger 2.A

 2. The algorithm B simulates the hash oracle and the TagGen oracle as follows.
 (For hash oracle H) At any time the forger 2A is able to query the random hash

 oracle h for || .name i After receiving the hash queries, the algorithm B responds as
 follows.

 (a) If 1i Tab∈/ , the algorithm B chooses a random number i qδ ∗∈ and sets = .i
ih gδ

 Then the algorithm B stores the tuple 1 = (, ,)i iTab i hδ and responds with
 (||) = iH name i h to the forger 2.A

 (b) If 1i Tab∈ , then the algorithm B responds with (||) = iH name i h in 1Tab .

 (For TagGen oracle) At any time the forger 2A can request a tag for (,)ii m to the

 TagGen oracle. When the forger 2A asks (,)ii m to the TagGen oracle, the algorithm
 B responds as follows.

2232 Kim et al.: Provably-Secure Public Auditing with Deduplication

 (a) If 1i Tab∈/ , the algorithm B chooses a random number i qδ ∗∈ and computes

()

= () () () .
f

b z a ai i
i g g g

α
δ βσ ⋅ ⋅

 The algorithm B responds with iσ and stores the tuple
 2 = (, , , ,).i i i iTab i h mδ σ

 (b) If 1,i Tab∈ the algorithm B retrieves the tuple (, ,)i ii hδ and computes

()

= () () () .
f

b z a ai i
i g g g

α
δ βσ ⋅ ⋅

 The algorithm B responds with iσ and stores the tuple
 2 = (, , , ,).i i i iTab i h mδ σ

3. The algorithm B chooses , qr R ∗← and a random k -elements subset [1,]K n⊂ ,

and computes .Rg In this process, B should choose a random subset that contains an
index i at least, where i has not been queried before in the TagGen oracle. Let dK
be a subset of the set ,K which comprises indices that have not been queried in
TagGen oracle. Then the algorithm B sends (, ,)RK r g as the challenge message.

 4. Finally, if the forger 2A outputs (, , ,)yπ ψ ρ∗ as the forged proof, the algorithm B
 first checks the following equation

 *(,) (,) (,) = (,).R R r y Re w e e v e gη ρ κ ψ κ π κ− −⋅ ⋅ ⋅ ⋅ (18)

If the above equation holds, = ,
t pii K pd i

ii K
u hρ
−

∈∗
∈

⋅
∑

∏ since the forger 2A can not generate

a valid tag. Then the algorithm B computes
1a bg
−

 as follows:

1

1
= () .

z pi
i Ka b d

pi i
i K

g

g
δ

ρ

−

⋅
∗

− ∈

∈

∑
∑

 (19)

The success probability of B is identical to the probability that the forger makes a valid
proof forgery (, , ,)yπ ψ ρ∗ . We analyze the lower bounds of the success probability in the
following claim.

Claim 4. The success probability of B is at least .ε

Proof of Claim 4. During the simulation, there is no case that the simulation is aborted.
Therefore, the success probability of B depends on the probability that the forger makes a
valid proof forgery. Thus the success probability of B is at least .ε

With the above claim, the algorithm B solves the DCDH problem with the probability .ε
Therefore, if the DCDH assumption holds, no algorithm exists that breaks the
proof-unforgeability of our scheme with a non-negligible probability.

4.3 Extended Scheme with Deduplication
In this section, we describe the deduplication protocol for our public auditing scheme. When a
user wishes to store a duplicated file, the server first checks the ownership of the file. If the
user actually owns the file, the server gives access rights for the file to the user and deletes the
duplicated files from the server. After the deduplication process, the users with valid rights to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2233

access the file is also able to perform the auditing process. The details of the deduplication
process as follows.

Suppose that a user wants to store a file F ′ in the server and F ′ is stored in the server. To
check that the user actually owns file ,F ′ the server selects a k -elements subset K of [1,]n
and requests the corresponding file blocks. After receiving the requests ,K the user responds
with the corresponding file blocks ,im for all .i K∈ Then the server computes

 = , = ,i i
i K i K

hσ σ ρ
∈ ∈

′ ′∏ ∏
1 ()

=2

= (() ,) = (,),
s j fj B

j

e g e g
β ααψ κ κ

+

′ ∏

 (20)

where 0 (1)= (0,0, ,...,)i i si K i K
B m m −∈ ∈∑ ∑

, and checks the following equation
 (,) (,) = (,).e u w e e gρ κ ψ σ′ ′ ′⋅ ⋅ (21)

 If the equation holds, the server considers that the user owns the file F ′ and gives the user
access rights to file ,F ′ as follows. At first, let 0user be the original user who uploaded file

,F ′ user

 be a new user who passes the ownership check defined above, and ownerS be a set of
users with access rights to the same file ,F ′ where 1 S≤ ≤

 and S

 is the number of
elements in the set .ownerS To eliminate the duplicated files, the server computes an aggregated
tag iσ ′ and stores only the aggregated tag iσ ′ instead of storing all the tags generated by the
different users for the same file ,F ′ where

()

=0 =0

=0

= = () .

S S

t x xS f
i

i i iu h g
α

βσ σ′ ⋅ ⋅
∑ ∑

∏

 (22)

 When cuser who belongs to the set ownerS wants to audit the integrity of ,F ′ he runs
Challenge algorithm and then sends (, ,)RK r g as a challenge message to the server. On
receiving the challenge message, the server computes =κ κ′ ∏

, =w w′ ∏

, and =v v′ ∏

,
where / ,ownerS c∈ and runs the Prove algorithm to generate (, , ,).yπ ψ ρ The server sends
(, , , , , ,)y v wπ ψ ρ κ′ ′ ′ to cuser . Then cuser can verify the proof for the challenged message by
the following equation:

 (,) (,) (,) = (,),R R r y R
ce w e e v v e gη ρ κ ψ κ π κ− −′⋅ ⋅ ⋅ ⋅ ⋅ (23)

where = cκ κ κ′ ⋅ and = .cw w w′ ⋅ If the equation holds, TPA outputs Accept ; otherwise TPA
outputs .Reject The correctness of the Equation (23) can be verified easily by extending the
correctness of the Equation (15), so we omit the details.

Table 2. Security and Complexity Comparison: Let Exp and Pair be the exponentiation operation
and the bilinear pairing operation, respectively. s is the number of sectors for the file block, d is the

number of challenged blocks, and L is the number of users’ subgroup.
 Computation Cost of TPA Communication Cost Tag-Unforgeability

[27] ()O s Exp⋅ + (1)O Pair⋅ ()O s d+ secure
[28] (1)O Exp⋅ + (1)O Pair⋅ (1)O insecure
[29] ()O d Exp⋅ + (1)O Pair⋅ ()O s d+ secure
[30] ()O d Exp⋅ + ()O L Pair⋅ ()O s d+ secure
Ours (1)O Exp⋅ + (1)O Pair⋅ (1)O secure

2234 Kim et al.: Provably-Secure Public Auditing with Deduplication

4.4 Discussions

Complexity Analysis. We compare the computation and communication costs of our scheme
with those of related works in Table 2 [26,28,29,30]. As shown in Table 2, the scheme
proposed in [28] has constant computation and communication costs, but the scheme is not
secure against tag-forgery. By contrast, our scheme not only has constant computation and
communication costs, but also is constructed secure against the tag-forgery.

Batch-Auditing. Occasionally, TPA may handle many auditing tasks during a short period of
time for multiple users. If TPA processes the auditing tasks one by one, long period of time is
needed for their computation. To reduce the communication and computation costs, we can
extend our scheme by using a technique similar to that proposed in [28] to support batch
auditing, thereby processing many auditing tasks at the same time.

Error Detection Probability. In our public auditing scheme, TPA requests a proof for a
k -elements subset of the stored data blocks instead of all the data blocks in order to improve
the efficiency of our scheme. Note that even though TPA uses the k sampled blocks for the
auditing, TPA can still detect the corrupted blocks with a high probability [4]. Suppose that
1% of all the blocks are corrupted. In such case, TPA can detect the modification of stored
data blocks with a probability of 99% or 95% by choosing 460 or 360 challenge data blocks,
respectively. If the user wishes to increase the detection probability for the same corrupted
data blocks, TPA simply increases the number of the challenge data blocks, although this
decreases the efficiency of the scheme.

5. Conclusion
In the paper, we pointed out that the Yuan and Yu’s public auditing scheme with deduplication
is not secure against a tag-forgery by a malicious server, and we proposed an improved scheme
which is secure and has the constant communication and computation costs. We also proved
that our improved scheme satisfies the tag-unforgeability and the proof-unforgeability under
the formal security models.

To the best of our knowledge, no ID-based public auditing scheme which has constant
computation cost and is proved under formal security model has been proposed. Therefore, it
may be interesting to construct a provably-secure ID-based public auditing scheme which has
constant computation costs.

References
[1] Dropbox for Business. [Online]. Available: https://www.dropbox.com/business, accessed Jan. 14,

2016.
[2] Google Drive. [Online]. Available: https://drive.google.com/, accessed Jan. 14, 2016.
[3] iCloud. [Online]. Available: https://www.icloud.com/, accessed Jan. 14, 2016.
[4] G. Ateniese, R. Burns, R. Curtmola, H. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable

Data Possession at Untrusted Stores,” in Proc. of the 14th ACM Conf. on Computer and
Communications Security, CCS 2007, pp.598-609, 2007. Article(CrossRef Link)

[5] A. Juels and B.S. Kaliski, “PORs: Proofs of retrievability for large files,” in Proc. of the 14th ACM
Conf. on Computer and Communications Security, CCS 2007, pp.584-597, 2007.
Article(CrossRef Link)

https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1315245.1315317

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2235

[6] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable and efficient provable data
possession,” in Proc. of the 4th Int. Conf. on Security and privacy in Communication networks,
SecureComm 2008, pp.1-10, 2008. Article(CrossRef Link)

[7] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. of the 14th annual Int.
Conf. on the theory and application of cryptology & information security, ASIACRYPT 2008,
pp.90-107, 2008. Article(CrossRef Link)

[8] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security in cloud computing,” in
Proc. of the 17th IEEE Int. Workshop on Quality of Services, IWQoS 2009, pp.1-9, 2009.
Article(CrossRef Link)

[9] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public Verifiability and Data Dynamic
for Storage Security in Cloud Computing,” in Proc. of the 14th European Symposium on Research
in Computer Security, ESORICS 2009, pp.355-370, 2009. Article(CrossRef Link)

[10] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic Provable Data Possession,” in
Proc. of the 16th ACM Conf. on Computer and Communications Security, CCS 2009, pp.213-222,
2009. Article(CrossRef Link)

[11] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for data storage
security in cloud computing,” in Proc. of the 29th IEEE Conf. on Computer Communications,
INFOCOM 2010, pp.525-533, 2010. Article(CrossRef Link)

[12] C. Wang, Q. Wang, K. Ren, and L. Lou, “Towards Secure and Dependable Storage Services in
Cloud Computing,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp.220-232, 2012.
Article(CrossRef Link)

[13] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public auditing for shared data in the
cloud,” in Proc. of the 5th IEEE Int. Conf. on Cloud Computing, CLOUD 2012, pp.295-302, 2012.
Article(CrossRef Link)

[14] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for
secure cloud storage,” IEEE Transactions on Computers, vol. 62, no.2, pp.362-375, 2013.
Article(CrossRef Link)

[15] H. Wang, “Proxy provable data possession in public clouds,” IEEE Transactions on Services
Computing, vol. 6, no. 4, pp.551-559, 2013. Article(CrossRef Link)

[16] B. Wang, B. Li, and H. Li, “Public auditing for shared data with efficient user revocation in the
cloud,” in Proc. of the 32th IEEE Int. Conf. on Computer Communications, INFOCOM 2013,
pp.2904-2912, 2013. Article(CrossRef Link)

[17] J. Yuan and S. Yu, “Proofs of Retrievability with Public Verifiability and Constant
Communication Cost in Cloud,” in Proc. of the 2013 Int. workshop on Security in cloud
computing , AISACCS-SCC 2013, pp.19-26, 2013. Article(CrossRef Link)

[18] S.G. Worku, C. Xu, J. Zhao, and X. He, “Secure and efficient privacy-preserving public auditing
scheme for cloud storage,” Computers & Electrical Engineering, vol. 40, no. 5, pp.1703-1713,
2014. Article(CrossRef Link)

[19] Y. Yu, J. Ni, M.H. Au, Y. Mu, B. Wang, and H. Li, “On the Security of a Public Auditing
Mechanism for Shared Cloud Data Service,” IEEE Transactions on Services Computing, vol. 8, no.
6, pp.998-999, 2014. Article(CrossRef Link)

[20] F. Armknecht, JM. Bohli, GO. Karame, Z. Liu, and CA. Reuter, “Outsourced Proofs of
Retrievability,” in Proc. of the 2014 ACM SIGSAC Conf. on Computer and Communications
Security, CCS 2014, pp.831-843, 2014. Article(CrossRef Link)

[21] T. Jiang, X. Chen, and J. Ma, “Public Integrity Auditing for Shared Dynamic Cloud Data with
Group User Revocation,” IEEE Transactions on Computers, vol. PP, no. 99, pp.1-12, 2015.
Article(CrossRef Link)

[22] A. F. Barsoum and M. A. Hasan, “Provable multicopy dynamic data possession in cloud
computing systems,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 3,
pp.485-497, 2015. Article(CrossRef Link)

[23] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao, “Enabling public auditing for shared data in
cloud storage supporting identity privacy and traceability,” The Journal of Systems and Software,
vol. 113, pp.130-139, 2016. Article(CrossRef Link)

https://doi.org/10.1145/1460877.1460889
https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.1109/IWQoS.2009.5201385
https://doi.org/10.1007/978-3-642-04444-1_22
https://doi.org/10.1145/1653662.1653688
https://doi.org/10.1109/infcom.2010.5462173
https://doi.org/10.1109/TSC.2011.24
https://doi.org/10.1109/cloud.2012.46
https://doi.org/10.1109/TC.2011.245
https://doi.org/10.1109/TSC.2012.35
https://doi.org/10.1109/INFCOM.2013.6567101
https://doi.org/10.1145/2484402.2484408
https://doi.org/10.1016/j.compeleceng.2013.10.004
https://doi.org/10.1109/TSC.2014.2355201
http://dl.acm.org/citation.cfm?id=2660310
http://ieeexplore.ieee.org/abstract/document/7004787/
https://doi.org/10.1109/TIFS.2014.2384391
https://doi.org/10.1016/j.jss.2015.11.044

2236 Kim et al.: Provably-Secure Public Auditing with Deduplication

[24] J. Yu, K. Ren, and C. Wang, “Enabling Cloud Storage Auditing with Verifiable Outsourcing of
Key Updates,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 6,
pp.1362-1375, 2016. Article(CrossRef Link)

[25] Y. Li, Y. Yu, B. Yang, G. Min, and H. Wu, “Privacy preserving cloud data auditing with efficient
key update,” Future Generation Computer Systems, available online, 2016.
Article(CrossRef Link)

[26] Q. Zheng, and S. Xu, “Secure and efficient proof of storage with deduplication,” in Proc. of the
2nd ACM Conf. on Data and Application Security and Privacy, CODASPY 2012, pp.1-12, 2012.
Article(CrossRef Link)

[27] Y. Shin, D. Koo, J. Hur, and J. Yun, “Secure proof of storage with deduplication for cloud storage
systems,” Multimedia Tools and Application, pp.1-16, 2015. Article(CrossRef Link)

[28] J. Yuan and S. Yu, “Secure and Constant Cost Public Cloud Storage Auditing with Deduplication,”
in Proc. of the IEEE Conf. on Communications and Network Security, CNS 2013, pp.145-153,
2013. Article(CrossRef Link)

[29] J. Li, J. Li, D. Xie, and Z. Cai, “Secure Auditing and Deduplicating Data in Cloud,” IEEE
Transactions on Computers, vol. PP, no. 99, pp.1-11, 2015. Article(CrossRef Link)

[30] N. Alkhojandi and A. Miri, “Privacy-Preserving Public Auditing in Cloud Computing with Data
Deduplication,” in Proc. of the 8th Int. Symp. on Foundations & Practice of Security, FPS 2015,
pp.35-48, 2015. Article(CrossRef Link)

[31] K. He, J. Chen, R. Du, Q. Wu, G. Xue, and X. Zhang, “DeyPoS: Duplicatable Dynamic Proof of
Storage for Multi-User Environments,” IEEE Transactions on Computers, Vol. 65, no. 12, 2016.
Article(CrossRef Link)

[32] F. Bao, R.H. Deng, and H. Zhu, “Variations of Diffie-Hellman Problem,” in Proc. of the 5th Int.
Conf. of Information and Communications Security, ICICS 2003, pp.301-312, 2003.
Article(CrossRef Link)

[33] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” in Proc. of the 7th
annual Int. Conf. on the theory and application of cryptology & information security,
ASIACRYPT 2001, pp.514-532, 2001. Article(CrossRef Link)

Dongmin Kim received his B.S. degree in mathematics from University of Seoul,
Korea, in 2009. He received his M.S. degree in Information Security from Korea
University in 2011. Currently, he is a Ph.D. candidate in the Graduate School of
Information Security, Korea University, Seoul, Korea. His current research areas include
cryptographic protocols, and privacy-preserving technologies.

Ik Rae Jeong received his B.S. and M.S. degrees in Computer Science from Korea
University, Korea, in 1998 and 2000, respectively. He received his Ph.D. degree in
Information Security from Korea University in 2004. From June 2006 to February 2008,
he was a senior engineer at the Electronics and Telecommunications Research
Institute(ETRI) in Korea. Currently, he is a member of the faculty in the Graduate School
of Information Security, Korea University, Seoul, Korea. His current research areas
include cryptography and theoretical computer science.

https://doi.org/10.1109/TIFS.2016.2528500
http://www.sciencedirect.com/science/article/pii/S0167739X16302989
https://doi.org/10.1145/2133601.2133603
http://link.springer.com/article/10.1007/s11042-015-2956-z
https://doi.org/10.1109/cns.2013.6682702
http://ieeexplore.ieee.org/abstract/document/7021919/
https://doi.org/10.1007/978-3-319-17040-4_3
https://doi.org/10.1109/TC.2016.2560812
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/3-540-45682-1_30

