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Abstract 

 
The deblocking filter (DF) reduces blocking artifacts in encoded video sequences, and thereby 
significantly improves the subjective and objective quality of videos. Statistics show that the 
DF accounts for 5–18% of the total decoding time in high-efficiency video coding. Therefore, 
speeding up the DF will improve codec performance, especially for the decoder. In view of the 
rapid development of multicore technology, we propose a parallel DF scheme based on a 
modified order of accessing the coding tree units (CTUs) by analyzing the data dependencies 
between adjacent CTUs. This enables the DF to run in parallel, providing accelerated 
performance and more flexibility in the degree of parallelism, as well as finer parallel 
granularity. We additionally solve the problems of variable privatization and thread 
synchronization in the parallelization of the DF. Finally, the DF module is parallelized based 
on the HM16.1 reference software using OpenMP technology. The acceleration performance 
is experimentally tested under various numbers of cores, and the results show that the 
proposed scheme is very effective at speeding up the DF. 
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1. Introduction 

High-efficiency video coding (HEVC) is a relatively new video coding standard developed 
by the Joint Collaborative Team on Video Coding. It achieves a higher compression efficiency 
and better video quality than the previous standards, and is better for encoding high-definition 
(HD) and ultra-HD video. Compared with H.264, at the same quality of coding, HEVC 
reduces the bitrate by approximately 50%, thus doubling the coding efficiency [1]. The high 
performance of HEVC entails high computational complexity in the codec [2]. This poses a 
significant challenge to the processor in performing real-time encoding and decoding. 
    Similar to previous video coding standards, HEVC is based on a hybrid coding scheme that 
uses block-based prediction and transform coding [3]. As shown in Fig. 1, an image frame is 
partitioned into multiple coding tree units (CTUs). Each CTU is recursively partitioned into 
coding units (CUs) using a quadtree structure. Moreover, each CU is partitioned into 
prediction units (PUs) and transform units (TUs) in different ways. Each of the final blocks 
produced by partitioning is independently encoded. Consequently, videos encoded using the 
HEVC standard may suffer from blocking artifacts, ringing, color deviations, and image 
blurring. 
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(a) (b) (c)  
Fig. 1. Block-based coding scheme: (a) CTUs; (b) CUs; and (c) subdivision of CUs (PUs and TUs) 

     
    Blocking artifacts are discontinuities caused by encoding at the block boundary of the 
reconstructed picture, and seriously affect the subjective quality of videos. These artifacts are 
primarily a result of the independence between the transformation, quantization, and encoding 
processes of each block. That is, adjacent blocks use different intra-prediction modes and 
different quantization parameters, or the prediction values of adjacent blocks are derived from 
different positions of different reference pictures in motion-compensated prediction. 
    To reduce the impact of blocking artifacts on video quality, various filtering techniques 
have been developed. In HEVC, the in-loop deblocking filter (DF) is adopted to reduce the 
presence of blocking artifacts in the reconstructed pictures. To further improve the quality of 
subsequent encoding, the filtered pictures can be used as references in time-domain prediction. 
This technology can adaptively select filtering parameters with different intensities according 
to different video content and encoding parameters. The DF then smooths the reconstructed 
picture based on these parameters. DF technology reduces the average bitrate by 1.3–3.3%, 
and the maximum bitrate by more than 6% for specific sequences [4]. Furthermore, the DF 
significantly improves the visual quality of the pictures. 
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    The DF is applied to both the encoder and decoder sides. Statistical data show that it 
accounts for 5–18% of the total decoding time [28]; hence, speeding up the DF will improve 
codec performance, especially for the decoder. With the development of multicore processor 
technology, the use of parallel processing to improve the encoding and decoding speeds in 
multicore environments has become a popular area of research. The DF module is relatively 
independent of the other HEVC modules, and is therefore suitable for parallel processing. 
Consequently, parallel operation is a good choice for speeding up the DF. 

In recent years, there have been numerous studies on the use of parallel technology to speed 
up all aspects of the video encoding and decoding process. In [5], a parallel implementation of 
H.264 decoding was introduced using an embedded multicore processor. In [6-8], the 
encoding process of H.264 was optimized using a graphics processor, whereas [9] reported an 
open platform for the design of parallel H.264 video encoders. In [10-12], the parallel 
optimization of motion estimation for H.264 and HEVC was proposed, and [13] described an 
efficient parallel HEVC intra prediction scheme. The authors of [14] proposed a highly 
parallel framework for the CU partitioning tree decisions in HEVC. 

Various parallel optimization schemes for the DF have also been reported. For example, 
[15-20] focused on the parallelization of the H.264 DF. For the HEVC DF, a two-step filtering 
scheme has been proposed [21] in which horizontal filtering is first performed across all 
vertical boundaries for all CTUs in the processing frame. Vertical filtering is then performed 
across all horizontal boundaries. This scheme is easily capable of performing horizontal and 
vertical filtering in parallel. A parallel DF in a directed acyclic graph-based order was 
proposed and shown to exhibit good performance on a Tile64 experimental platform [22]. A 
heterogeneous platform consisting of CPUs and GPUs has been used to speed up the DF 
process [23], allowing the advantages of streaming multiprocessors in GPUs to be fully 
implemented. In [24], three different parallel DF implementations were compared. The first 
was a separate filtering method in which horizontal and vertical filtering were successively 
performed in parallel for one frame. The other two implementations were combined filtering 
methods in which concurrent threads had to be synchronized to complete the filtering. In 
addition, hardware architecture implementations of the DF have been reported [25-29]. 
    Despite the contributions of the above-mentioned parallel schemes based on multicore 
platforms, several limitations remain. For example, there is the high communication overhead 
among threads, coarse parallel granularity, and the lack of adaptation to different resolution 
sequences and processors with different numbers of cores. In this paper, by analyzing the data 
dependencies between adjacent CTUs, we develop a parallel scheme based on a modified 
order of accessing the CTUs so as to speed up the DF process. In our approach, the filtering 
task is divided into several subtasks of equal size based on the number of threads. Multiple 
threads then simultaneously perform horizontal filtering in accordance with the order of rows. 
After synchronization, they perform vertical filtering according to the order of the columns. In 
this way, multiple threads can simultaneously perform filtering on different CTUs without 
data access conflicts. Thus, the DF module is speeded up, and the entire codec performance is 
improved. 
    The contributions of this paper are as follows. First, we propose a conflict-free parallel DF 
scheme based on the results of a data-dependency analysis, which significantly speeds up the 
process of the DF. This scheme has two advantages. The flexible degree of parallelism (DOP) 
makes it adaptive to different resolution sequences and processors with different capacities, 
and finer parallel granularity allows for better load balancing in the execution of threads. 
Second, the privatization of variables and synchronization of threads, which are typical 
problems related to parallel programming, are solved, enabling the DF to run correctly in 
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parallel. Third, after removing a number of bugs caused by parallelization, the proposed 
parallel scheme is ultimately implemented using the OpenMP technology. The acceleration 
performance is then tested under different numbers of cores. 
    The remainder of this paper is organized as follows. In Section 2, we review the process of 
the DF. Section 3 then introduces the proposed parallel DF scheme. In Section 4, the problems 
of variable privatization and thread synchronization are solved. Experimental results are 
presented in Section 5, and our conclusions are given in Section 6. 

2. HEVC Deblocking Filter 
Each step of the DF is involved in the process of parallelization. Therefore, this section 
presents a review of the four steps of the DF. 

2.1 Determining the Block Boundaries  
The DF reduces blocking artifacts by smoothing samples on each side of the boundaries, 
where the block boundaries come from the PUs and TUs, rather than the inherent boundaries 
of the picture. Moreover, unlike H.264, in which the DF is applied to all 4×4 block boundaries 
of a picture, the HEVC DF addresses the boundaries of the PUs and TUs using an 8×8 block, 
as shown in Fig. 2. Only the boundaries (V1,V2,V3 and H1) of the 8×8 grid are subjected to 
filtering; P and Q are 4×4 sample blocks on each side of the boundary that represent the 
samples to be filtered at a given time. 
 

P Q

  

V1 H1V2 V3

 
Fig. 2. Block boundaries for the DF 

 

2.2 Calculating the Boundary Strength 
The boundary strength (BS) is calculated to determine whether the block boundary is to be 
filtered and the filtering parameters according to the encoding parameters of blocks P and Q. 
The BS is calculated for all boundaries that need to be filtered; the BS takes values of 0, 1, or 2. 
The BS calculation process is depicted in Fig. 3. 
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Fig. 3. Flowchart for calculating the BS 

2.3 Filtering Decision 
The filtering decision ultimately determines whether the boundary must be filtered and the 
filtering strength. A filtering region containing a vertical boundary is shown in Fig. 4, where px, 

y and qx, y are sample values on each side of the block boundary. 
 

p3,0 p0,0p1,0p2,0 q0,0 q3,0q2,0q1,0

P Q
Vertical Boundary

p3,1 p0,1p1,1p2,1 q0,1 q3,1q2,1q1,1

p3,2 p0,2p1,2p2,2 q0,2 q3,2q2,2q1,2

p3,3 p0,3p1,3p2,3 q0,3 q3,3q2,3q1,3

 
Fig. 4. A filtering region containing a vertical boundary 

 
    As specified in HEVC, if the BS is greater than zero and Inequality (1) is satisfied, the DF is 
applied; otherwise, the DF is not applied. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017                                    1689 

 
0 02 0 1 0 0 0 2 0 1 0 2 3 1 3 0 3 2 3 1 3 0 32 2 2 2

,, , , , , , , , , , ,p p p q q q p p p q q q β− + + − + + − + + − + <   (1) 

 
where β is a decision threshold relating to the quantization parameters of blocks P and Q (QPP, 
QPQ) as well as the slice-level compensation value (slice_beta_offset_div2).  
    HEVC has two DF modes. Therefore, before filtering, either normal or strong filtering must 
be selected according to the following expressions. If Inequalities (2)–(7) hold, strong filtering 
is applied; otherwise, normal filtering is applied. 
 
 2 0 1 0 0 0 2 0 1 0 0 02 2 8, , , , , ,p p p q q q β− + + − + <   (2) 

 2 3 1 3 0 3 2 3 1 3 0 32 2 8, , , , , ,p p p q q q β− + + − + <  (3) 

 3 0 0 0 0 0 3 0 8, , , ,p p q q β− + − <  (4) 

 3 3 0 3 0 3 3 3 8, , , ,p p q q β− + − <  (5) 

 0 0 0 0 2 5, , Cp q . t− <  (6) 

 0 3 0 3 2 5, , Cp q . t− <  (7) 

 
where tC is a decision threshold related to BS, QPP, QPQ, and the slice-level compensation 
value (slice_tc_offset_div2).  
    The filtering decision process is summarized in Fig. 5. 

 

Strong Filter Normal Filter No Filter
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Cond.(1)
true?

Cond.(2-7)
true?

Y

Y

Y N

N

N

    
Fig. 5. Flowchart of the filtering decision 

 

2.4 Filtering Operation 
The filtering operation is the final step of the DF process, and is responsible for smoothing the 



1690                                                                  Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing 
the Coding Tree Units for HEVC on Multicore Processor 

samples on either side of the block boundary. The number of samples to be modified will vary 
according to the filtering condition. Under normal filtering, if Inequality (8) holds, the two 
samples closest to the block boundary (p0 and p1) will be modified in block P. Otherwise, only 
the nearest sample (p0) in block P will be modified. A similar process is applied to block Q in 
accordance with Inequality (9). When strong filtering is applied, three samples on either side 
of the block boundary will be modified (p0, p1, p2 in block P and q0, q1, q2 in block Q). Details 
can be found in [4-5]. 
 
 2 0 1 0 0 0 2 3 1 3 0 32 2 3 16, , , , , ,p p p p p p β− + + − + <   (8) 

 2 0 1 0 0 0 2 3 1 3 0 32 2 3 16, , , , , ,q q q q q q β− + + − + <   (9) 

3. Proposed Parallel Scheme for Deblocking Filter 
In this section, a parallel DF scheme based on a modified order of accessing the CTUs is 
proposed. The modified order is determined by analyzing the data dependencies between 
adjacent CTUs.  

3.1 Data Dependency Analysis 
Data dependencies are not conducive to the parallelization of a program, as they cause data 
access conflicts. Hence, to parallelize the DF, we must first analyze the potential data 
dependencies.  
    Two important data items are often accessed during the DF process: the tentatively named 
TComDataCU and PicYuvRec. The former saves partition information about the CTUs (the 
partition of PUs and TUs), prediction mode information, and so on, which is mainly accessed 
when calculating the BS and making a filtering decision. The latter stores the reconstructed 
picture, which can be regarded as the image given by the original picture through 
transformation, quantization, inverse quantization, and inverse transformation in the encoding 
process. It can also be regarded as a decoded and unfiltered picture from the stream file in the 
decoding process. This data item is mainly accessed in the filtering operation stage. 
 

P Q

#n CTU #n+1 CTU

V1

P

Q

H1

#n CTU

#n+1 CTU

(b)(a)  
Fig. 6. Special cases for: (a) horizontal filtering; (b) vertical filtering 
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    Data dependency occurs in special cases of horizontal filtering and vertical filtering, namely, 
when the boundary to be filtered is located between adjacent CTUs, as shown in Fig. 6. In this 
case, the BS value of V1 (or H1) is calculated by reading the prediction modes of blocks P and 
Q according to the specification shown in Fig. 3. In other words, both TComDataCUn+1 of 
CTU #n+1 and TComDataCUn of CTU #n must be accessed. The same situation occurs in the 
filtering decision stage according to the specification shown in Fig. 5. Thus, when horizontal 
filtering is performed for CTU #n+1, access to the current CTU is required, and access to the 
left CTU may be needed. Similarly, when vertical filtering occurs, access to the upper CTU 
may be needed, in addition to the necessary access to the current CTU. This scenario indicates 
that some data dependency will persist in the DF process, even though the method proposed in 
[21] is used. 
    Data access conflicts may appear when the DF module runs in parallel, as multiple threads 
will access different CTUs simultaneously. Suppose that, at a specific time, threadn+1 
calculates the BS for V1 in CTU #n+1 and threadn calculates the BS for a certain boundary in 
CTU #n. This will cause a data access conflict, because threadn+1 must access TComDataCUn 
of CTU #n while it is occupied by threadn.  

3.2 Proposed Parallel Scheme 
The above analysis causes us to believe that data access conflicts in the parallel DF can be 
avoided by modifying the order in which CTUs are accessed. That is, for a single frame, 
horizontal filtering is first performed with the CTUs accessed according to the row order. 
Vertical filtering is then conducted with the CTUs accessed according to the column order. 
This access order is more parallel-friendly than that in the method proposed in [21]. 
     Based on the above access order, we propose a parallel DF scheme as follows. The filtering 
task is divided into several subtasks of equal size in CTU based on the number of threads. 
Multiple threads are then simultaneously started to perform horizontal filtering from different 
locations of the frame in accordance with the row order. After synchronization, the threads 
perform vertical filtering according to the column order. Fig. 7 illustrates this procedure in a 
quad-core case. First, four threads perform horizontal filtering in accordance with the order of 
the rows. Then, they perform vertical filtering according to the order of the columns. In this 
case, no data access conflicts occur among the four concurrent threads; therefore, all four cores 
can be effectively used. 
 

T1

T2

T3

T4

T1 T2 T4T3

(a) (b)  
Fig. 7. Proposed parallel DF in a quad-core case: (a) parallel horizontal filtering;  

(b) parallel vertical filtering 
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 In our scheme, the number of threads may not be the same as the number of rows. Fig. 8(a) 
shows the case in which the number of threads is less than the number of rows, whereas in Fig. 
8(b) the number of threads is greater than the number of rows. This thread allocation strategy 
has two advantages. The first is the flexible DOP, which enables adaptation to different 
resolution sequences and processors with different numbers of cores (i.e., dual-core, quad-core, 
or octa-core). The second advantage is the finer parallel granularity, namely, the filtering of a 
single CTU is treated as an atomic task and assigned to a thread. This achieves better load 
balancing than the scheme proposed in [24], where a whole row is assigned to a thread. 
 

T1

T4

T1

T4

T7

T10

T2

T3

T5

T6

T2

T3

T5

T6

T8

T9

T12

T11

(a) (b)  
Fig. 8. Parallel horizontal filtering with different numbers of threads:  
(a) less than the number of rows, (b) greater than the number of rows 

 

4. Problems Associated with the Parallel Deblocking Filter  
In addition to data dependencies, several typical problems related to parallel programming 
need to be solved to ensure the parallel DF runs correctly. This section discusses two common 
issues, namely the privatization of variables and the synchronization of threads in the 
parallelization of the DF. 

4.1 Variable Privatization 
In the DF module, there are two shared variables that need to be privatized. One stores the 
boundary information of the CTU, and the other stores the BS value. The vertical and 
horizontal boundary information is stored in a two-dimensional array of length 256 (when the 
size of the CTU is 64×64). The value type is Boolean; initially, all elements in the array are 
zero (false). After boundary identification, elements for which a boundary exists are assigned 
a value of one (true). An example is depicted in Fig. 9. 
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×

(d)(c)  
Fig. 9. Illustration of the array used to store the vertical boundary information:  

(a) CTU and its boundary information, where the solid line represents the partition boundaries of the 
PUs and TUs; (b) an array that stores vertical boundary information with elements in the Z scanning 

order; (c) an array with elements in raster scan order converted by the Z scanning order; and  
(d) the corresponding vertical boundaries of the array 

 
When the DF is applied in non-parallel mode, there is a single main thread. Therefore, the 

CTUs in the frame can only be handled one at a time. However, when the parallel DF is 
applied, multiple CTUs are processed by multiple threads simultaneously. It is impossible to 
store the boundary information of multiple CTUs using only one array. Therefore, a 
thread-private array must be maintained to save the boundary information of the CTUs for 
each thread. By default, the variables are shared by all threads; thus, the “threadprivate” 
directive is added in the parallel DF version to make the array thread-private. Similarly, 
another array exists to store the BS. This array must also be privatized. 

4.2 Thread Synchronization 
A second problem to be solved in the parallelization of the DF is thread synchronization. For 
each frame, vertical filtering begins after the completion of horizontal filtering. Thus, the 
parallelization of the filtering is divided into two stages: parallel horizontal filtering and 
parallel vertical filtering. Multiple concurrent threads must be synchronized once the parallel 
horizontal filtering has been completed. These threads are then concurrently started for the 
vertical filtering, as shown in Fig. 10. In our solution, an implicit barrier method is adopted to 
synchronize these threads. 
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Fig. 10. Illustration of thread synchronization 

5. Experiments and Performance Evaluation 
This section describes three experiments. First, the filtering effect of the proposed parallel DF 
is compared with that of the non-parallel (original) DF to show that the proposed scheme does 
not adversely affect the filtering. Second, the acceleration performance of the proposed 
parallel DF is tested for various numbers of cores. In each case, the speedup ratio is calculated 
and the ability to adapt to different resolution sequences and core numbers is verified 
implicitly. Third, the acceleration performance of the proposed scheme is compared with that 
of SeparateFiltering [24] to demonstrate the potential of our scheme, especially for load 
balancing. 

5.1 Experimental Setting 
The DF module was parallelized using the OpenMP [30]. After fixing various bugs caused by 
parallelization, the evaluations were conducted using HM16.1 (the reference software for 
HEVC) [31] and a server with an Intel® CoreTM Xeon E-5 2680 CPU at 2.8 GHz. The test 
sequences recommended by JCT-VC were classified into six class (Class A–F) according to 
the picture size and their applications, and six of them were selected (one taken from each of 
six class) for the tests. To facilitate the comparison of statistics, only the first ten frames of the 
sequences were tested under all intra (AI) configurations [32]. 

5.2 Experimental Results 
We evaluated the performance of the parallel DF from two aspects: (1) filtering effect, and (2) 
speedup ratio. 

The filtering effect was determined indirectly by investigating the peak signal-to-noise ratio 
(PSNR) and the structural similarity (SSIM) of the encoded sequence. These two metrics are 
used to indicate the objective and subjective video quality, respectively. Specifically, the same 
sequence was encoded twice, one through non-parallel filtering, and another through parallel 
filtering. The PSNR and the SSIM of the two coded sequences were collected. Table 1 lists the 
PSNR and SSIM results about the six sequences. It is evident that both the PSNR and SSIM 
perform the same, which implies that the parallelization of the DF does not affect the filtering 
performance. 
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Table 1. Comparison of encoding performance  

Class Sequences Resolution 
Non-parallel Parallel 

PSNR SSIM PSNR SSIM 
A Traffic 2560×1600 37.71 0.94 37.71 0.94 
B BasketballDrive 1920×1080 39.01 0.91 39.01 0.91 
C BasketballDrill 832×480 36.37 0.89 36.37 0.89 
D BasketballPass 416×240 36.50 0.91 36.50 0.91 
E FourPeople 1280×720 39.47 0.96 39.47 0.96 
F ChinaSpeed 1024×768 38.38 0.96 38.38 0.96 

 
The speedup ratio was measured using the filtering time, namely, the execution time of the 

filtering process. Similar to the previous evaluation, the same sequence went through the 
processes of non-parallel filtering and parallel filtering. The non-parallel DF was executed 
firstly and the filtering time for Class A–F were plotted in Fig. 11, in which the horizontal and 
vertical axes stand for the frame number and filtering time, respectively. As expected, the 
filtering time increases with the sequence resolution. Moreover, the filtering time of each 
frame is approximately equal due to the use of the AI configuration. To ensure the accuracy of 
evaluation, the filtering time of the ten frames was averaged and the mean will be used for 
calculating the speedup ratio. 

 

 
 

Fig. 11. Filtering time of the first ten frames of different test sequences 
 
Then, the parallel DF was conducted with 2, 4, 6, 8, 10 cores respectively. The execution 

time was recorded and the speedup ratio can be calculated accordingly, i.e., the ratio of 
execution times of non-parallel and parallel DF. The speedup ratios for different numbers of 
cores are shown in Fig. 12. As shown in this figure, the DF performance improved 
significantly while parallelizing, and the speedup ratio increases as the growth of number of 
cores. However, the speedup is not as linear as expected (the trend is clearly shown in Fig. 13), 
which is consistent with Amdahl’s law [33].  
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Fig. 12. Speedup ratio obtained after parallelization for different numbers of cores 
 
    It can also be observed that, for a given number of cores, the speedup obtained for sequences 
of different resolution varies slightly. In particular, the speedup of the Class D sequence shows 
no improvement when going from eight to ten cores, because it is not worthwhile for too many 
threads to handle such a low-resolution sequence. In fact, when the program runs in parallel, 
the total time spent includes both the program runtime and the time spent starting and 
recycling additional threads. 
     We also evaluated our parallel scheme by comparing its acceleration performance with that 
of the SeparateFiltering scheme proposed in [24]. Both schemes adopt a two-step filtering 
method. Test sequences of 1080p and 1600p were used as inputs, and the comparative 
experimental results are shown in Fig. 13. It can be seen that our parallel scheme achieves 
better acceleration performance, especially with more than six cores. This improvement is 
because our scheme effectively prevents data access conflicts and achieves better load 
balancing. 
 

 

Fig. 13. Comparison of our parallel scheme and the SeparateFiltering scheme 
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6. Conclusion 
In this paper, we proposed a parallel scheme to speed up the HEVC DF on a multicore 
processor. This scheme is based on a modified order of accessing the CTUs, and enables the 
DF to run rapidly in parallel without data access conflicts among multiple concurrent threads, 
as well as offering more flexibility in DOP and finer parallel granularity. After various bugs 
had been corrected and the problems of variable privatization and thread synchronization had 
been solved, the proposed scheme was implemented using OpenMP technology and tested on 
a multicore processor. Experimental results showed that the proposed scheme significantly 
speeds up the DF compared with the non-parallel DF without any loss of filtering effect and 
outperforms a similar parallel scheme.  
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