
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, Mar. 2017 1684
Copyright ⓒ2017 KSII

Parallel Deblocking Filter Based on
Modified Order of Accessing the Coding

Tree Units for HEVC on Multicore Processor

Haiwei Lei1, Wenyi Liu1 and Anhong Wang2
1 Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of

China
Taiyuan, 030051- China

 [e-mail: lhw0312@163.com; liuwenyi@nuc.edu.cn]
2 School of Electronic Information Engineering, Taiyuan University of Science and Technology

Taiyuan, 030024 - China
[e-mail: wah_ty@163.com]

*Corresponding author: Wenyi Liu; Anhong Wang

Received April 11, 2016; revised October 18, 2016; revised December 12, 2016; accepted January 15, 2017;
published March 31, 2017

Abstract

The deblocking filter (DF) reduces blocking artifacts in encoded video sequences, and thereby
significantly improves the subjective and objective quality of videos. Statistics show that the
DF accounts for 5–18% of the total decoding time in high-efficiency video coding. Therefore,
speeding up the DF will improve codec performance, especially for the decoder. In view of the
rapid development of multicore technology, we propose a parallel DF scheme based on a
modified order of accessing the coding tree units (CTUs) by analyzing the data dependencies
between adjacent CTUs. This enables the DF to run in parallel, providing accelerated
performance and more flexibility in the degree of parallelism, as well as finer parallel
granularity. We additionally solve the problems of variable privatization and thread
synchronization in the parallelization of the DF. Finally, the DF module is parallelized based
on the HM16.1 reference software using OpenMP technology. The acceleration performance
is experimentally tested under various numbers of cores, and the results show that the
proposed scheme is very effective at speeding up the DF.

Keywords: Deblocking filter, parallel programming, multicore processor, high-efficiency
video coding (HEVC)

This work is supported in part by the National Natural Science Foundation of China (No. 61272262 and 61210006),
the Program for New Century Excellent Talent in Universities (NCET-12-1037), the International Cooperative
Program of Shanxi Province (No. 2015081015).

https://doi.org/10.3837/tiis.2017.03.024 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1685

1. Introduction

High-efficiency video coding (HEVC) is a relatively new video coding standard developed
by the Joint Collaborative Team on Video Coding. It achieves a higher compression efficiency
and better video quality than the previous standards, and is better for encoding high-definition
(HD) and ultra-HD video. Compared with H.264, at the same quality of coding, HEVC
reduces the bitrate by approximately 50%, thus doubling the coding efficiency [1]. The high
performance of HEVC entails high computational complexity in the codec [2]. This poses a
significant challenge to the processor in performing real-time encoding and decoding.
 Similar to previous video coding standards, HEVC is based on a hybrid coding scheme that
uses block-based prediction and transform coding [3]. As shown in Fig. 1, an image frame is
partitioned into multiple coding tree units (CTUs). Each CTU is recursively partitioned into
coding units (CUs) using a quadtree structure. Moreover, each CU is partitioned into
prediction units (PUs) and transform units (TUs) in different ways. Each of the final blocks
produced by partitioning is independently encoded. Consequently, videos encoded using the
HEVC standard may suffer from blocking artifacts, ringing, color deviations, and image
blurring.

CU 0 CU 1

CU 2
CU 3 CU 4

CU 5 CU 6

Coding Tree Unit Prediction Units

Transform Units

Frame

CTU …Slice1… CTUCTU CTU

CTU CTU CTU CTU CTUCTU CTU

CTU CTUCTU

CTU

CTU CTUCTU CTU

…Slice2… …

…

…SliceN…

(a) (b) (c)
Fig. 1. Block-based coding scheme: (a) CTUs; (b) CUs; and (c) subdivision of CUs (PUs and TUs)

 Blocking artifacts are discontinuities caused by encoding at the block boundary of the
reconstructed picture, and seriously affect the subjective quality of videos. These artifacts are
primarily a result of the independence between the transformation, quantization, and encoding
processes of each block. That is, adjacent blocks use different intra-prediction modes and
different quantization parameters, or the prediction values of adjacent blocks are derived from
different positions of different reference pictures in motion-compensated prediction.
 To reduce the impact of blocking artifacts on video quality, various filtering techniques
have been developed. In HEVC, the in-loop deblocking filter (DF) is adopted to reduce the
presence of blocking artifacts in the reconstructed pictures. To further improve the quality of
subsequent encoding, the filtered pictures can be used as references in time-domain prediction.
This technology can adaptively select filtering parameters with different intensities according
to different video content and encoding parameters. The DF then smooths the reconstructed
picture based on these parameters. DF technology reduces the average bitrate by 1.3–3.3%,
and the maximum bitrate by more than 6% for specific sequences [4]. Furthermore, the DF
significantly improves the visual quality of the pictures.

1686 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

 The DF is applied to both the encoder and decoder sides. Statistical data show that it
accounts for 5–18% of the total decoding time [28]; hence, speeding up the DF will improve
codec performance, especially for the decoder. With the development of multicore processor
technology, the use of parallel processing to improve the encoding and decoding speeds in
multicore environments has become a popular area of research. The DF module is relatively
independent of the other HEVC modules, and is therefore suitable for parallel processing.
Consequently, parallel operation is a good choice for speeding up the DF.

In recent years, there have been numerous studies on the use of parallel technology to speed
up all aspects of the video encoding and decoding process. In [5], a parallel implementation of
H.264 decoding was introduced using an embedded multicore processor. In [6-8], the
encoding process of H.264 was optimized using a graphics processor, whereas [9] reported an
open platform for the design of parallel H.264 video encoders. In [10-12], the parallel
optimization of motion estimation for H.264 and HEVC was proposed, and [13] described an
efficient parallel HEVC intra prediction scheme. The authors of [14] proposed a highly
parallel framework for the CU partitioning tree decisions in HEVC.

Various parallel optimization schemes for the DF have also been reported. For example,
[15-20] focused on the parallelization of the H.264 DF. For the HEVC DF, a two-step filtering
scheme has been proposed [21] in which horizontal filtering is first performed across all
vertical boundaries for all CTUs in the processing frame. Vertical filtering is then performed
across all horizontal boundaries. This scheme is easily capable of performing horizontal and
vertical filtering in parallel. A parallel DF in a directed acyclic graph-based order was
proposed and shown to exhibit good performance on a Tile64 experimental platform [22]. A
heterogeneous platform consisting of CPUs and GPUs has been used to speed up the DF
process [23], allowing the advantages of streaming multiprocessors in GPUs to be fully
implemented. In [24], three different parallel DF implementations were compared. The first
was a separate filtering method in which horizontal and vertical filtering were successively
performed in parallel for one frame. The other two implementations were combined filtering
methods in which concurrent threads had to be synchronized to complete the filtering. In
addition, hardware architecture implementations of the DF have been reported [25-29].
 Despite the contributions of the above-mentioned parallel schemes based on multicore
platforms, several limitations remain. For example, there is the high communication overhead
among threads, coarse parallel granularity, and the lack of adaptation to different resolution
sequences and processors with different numbers of cores. In this paper, by analyzing the data
dependencies between adjacent CTUs, we develop a parallel scheme based on a modified
order of accessing the CTUs so as to speed up the DF process. In our approach, the filtering
task is divided into several subtasks of equal size based on the number of threads. Multiple
threads then simultaneously perform horizontal filtering in accordance with the order of rows.
After synchronization, they perform vertical filtering according to the order of the columns. In
this way, multiple threads can simultaneously perform filtering on different CTUs without
data access conflicts. Thus, the DF module is speeded up, and the entire codec performance is
improved.
 The contributions of this paper are as follows. First, we propose a conflict-free parallel DF
scheme based on the results of a data-dependency analysis, which significantly speeds up the
process of the DF. This scheme has two advantages. The flexible degree of parallelism (DOP)
makes it adaptive to different resolution sequences and processors with different capacities,
and finer parallel granularity allows for better load balancing in the execution of threads.
Second, the privatization of variables and synchronization of threads, which are typical
problems related to parallel programming, are solved, enabling the DF to run correctly in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1687

parallel. Third, after removing a number of bugs caused by parallelization, the proposed
parallel scheme is ultimately implemented using the OpenMP technology. The acceleration
performance is then tested under different numbers of cores.
 The remainder of this paper is organized as follows. In Section 2, we review the process of
the DF. Section 3 then introduces the proposed parallel DF scheme. In Section 4, the problems
of variable privatization and thread synchronization are solved. Experimental results are
presented in Section 5, and our conclusions are given in Section 6.

2. HEVC Deblocking Filter
Each step of the DF is involved in the process of parallelization. Therefore, this section
presents a review of the four steps of the DF.

2.1 Determining the Block Boundaries
The DF reduces blocking artifacts by smoothing samples on each side of the boundaries,
where the block boundaries come from the PUs and TUs, rather than the inherent boundaries
of the picture. Moreover, unlike H.264, in which the DF is applied to all 4×4 block boundaries
of a picture, the HEVC DF addresses the boundaries of the PUs and TUs using an 8×8 block,
as shown in Fig. 2. Only the boundaries (V1,V2,V3 and H1) of the 8×8 grid are subjected to
filtering; P and Q are 4×4 sample blocks on each side of the boundary that represent the
samples to be filtered at a given time.

P Q

V1 H1V2 V3

Fig. 2. Block boundaries for the DF

2.2 Calculating the Boundary Strength
The boundary strength (BS) is calculated to determine whether the block boundary is to be
filtered and the filtering parameters according to the encoding parameters of blocks P and Q.
The BS is calculated for all boundaries that need to be filtered; the BS takes values of 0, 1, or 2.
The BS calculation process is depicted in Fig. 3.

1688 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

P or Q is intra?

BS=2

P or Q has non-zero coded
residual coefficient and boundary

is a transform boundary?

the number of motion vectors is
different for P and Q?

BS=1 BS=0

Y N

N

N

N

N

Y

Y

Y

Y

P and Q refers to different
reference pictures?

Absolute differences between
corresponding spatial motion
vector components of the two

blocks are >= 1?

Fig. 3. Flowchart for calculating the BS

2.3 Filtering Decision
The filtering decision ultimately determines whether the boundary must be filtered and the
filtering strength. A filtering region containing a vertical boundary is shown in Fig. 4, where px,

y and qx, y are sample values on each side of the block boundary.

p3,0 p0,0p1,0p2,0 q0,0 q3,0q2,0q1,0

P Q
Vertical Boundary

p3,1 p0,1p1,1p2,1 q0,1 q3,1q2,1q1,1

p3,2 p0,2p1,2p2,2 q0,2 q3,2q2,2q1,2

p3,3 p0,3p1,3p2,3 q0,3 q3,3q2,3q1,3

Fig. 4. A filtering region containing a vertical boundary

 As specified in HEVC, if the BS is greater than zero and Inequality (1) is satisfied, the DF is
applied; otherwise, the DF is not applied.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1689

0 02 0 1 0 0 0 2 0 1 0 2 3 1 3 0 3 2 3 1 3 0 32 2 2 2

,, , , , , , , , , , ,p p p q q q p p p q q q β− + + − + + − + + − + < (1)

where β is a decision threshold relating to the quantization parameters of blocks P and Q (QPP,
QPQ) as well as the slice-level compensation value (slice_beta_offset_div2).
 HEVC has two DF modes. Therefore, before filtering, either normal or strong filtering must
be selected according to the following expressions. If Inequalities (2)–(7) hold, strong filtering
is applied; otherwise, normal filtering is applied.

 2 0 1 0 0 0 2 0 1 0 0 02 2 8, , , , , ,p p p q q q β− + + − + < (2)

 2 3 1 3 0 3 2 3 1 3 0 32 2 8, , , , , ,p p p q q q β− + + − + < (3)

 3 0 0 0 0 0 3 0 8, , , ,p p q q β− + − < (4)

 3 3 0 3 0 3 3 3 8, , , ,p p q q β− + − < (5)

 0 0 0 0 2 5, , Cp q . t− < (6)

 0 3 0 3 2 5, , Cp q . t− < (7)

where tC is a decision threshold related to BS, QPP, QPQ, and the slice-level compensation
value (slice_tc_offset_div2).
 The filtering decision process is summarized in Fig. 5.

Strong Filter Normal Filter No Filter

BS>0？

Cond.(1)
true?

Cond.(2-7)
true?

Y

Y

Y N

N

N

Fig. 5. Flowchart of the filtering decision

2.4 Filtering Operation
The filtering operation is the final step of the DF process, and is responsible for smoothing the

1690 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

samples on either side of the block boundary. The number of samples to be modified will vary
according to the filtering condition. Under normal filtering, if Inequality (8) holds, the two
samples closest to the block boundary (p0 and p1) will be modified in block P. Otherwise, only
the nearest sample (p0) in block P will be modified. A similar process is applied to block Q in
accordance with Inequality (9). When strong filtering is applied, three samples on either side
of the block boundary will be modified (p0, p1, p2 in block P and q0, q1, q2 in block Q). Details
can be found in [4-5].

 2 0 1 0 0 0 2 3 1 3 0 32 2 3 16, , , , , ,p p p p p p β− + + − + < (8)

 2 0 1 0 0 0 2 3 1 3 0 32 2 3 16, , , , , ,q q q q q q β− + + − + < (9)

3. Proposed Parallel Scheme for Deblocking Filter
In this section, a parallel DF scheme based on a modified order of accessing the CTUs is
proposed. The modified order is determined by analyzing the data dependencies between
adjacent CTUs.

3.1 Data Dependency Analysis
Data dependencies are not conducive to the parallelization of a program, as they cause data
access conflicts. Hence, to parallelize the DF, we must first analyze the potential data
dependencies.
 Two important data items are often accessed during the DF process: the tentatively named
TComDataCU and PicYuvRec. The former saves partition information about the CTUs (the
partition of PUs and TUs), prediction mode information, and so on, which is mainly accessed
when calculating the BS and making a filtering decision. The latter stores the reconstructed
picture, which can be regarded as the image given by the original picture through
transformation, quantization, inverse quantization, and inverse transformation in the encoding
process. It can also be regarded as a decoded and unfiltered picture from the stream file in the
decoding process. This data item is mainly accessed in the filtering operation stage.

P Q

#n CTU #n+1 CTU

V1

P

Q

H1

#n CTU

#n+1 CTU

(b)(a)
Fig. 6. Special cases for: (a) horizontal filtering; (b) vertical filtering

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1691

 Data dependency occurs in special cases of horizontal filtering and vertical filtering, namely,
when the boundary to be filtered is located between adjacent CTUs, as shown in Fig. 6. In this
case, the BS value of V1 (or H1) is calculated by reading the prediction modes of blocks P and
Q according to the specification shown in Fig. 3. In other words, both TComDataCUn+1 of
CTU #n+1 and TComDataCUn of CTU #n must be accessed. The same situation occurs in the
filtering decision stage according to the specification shown in Fig. 5. Thus, when horizontal
filtering is performed for CTU #n+1, access to the current CTU is required, and access to the
left CTU may be needed. Similarly, when vertical filtering occurs, access to the upper CTU
may be needed, in addition to the necessary access to the current CTU. This scenario indicates
that some data dependency will persist in the DF process, even though the method proposed in
[21] is used.
 Data access conflicts may appear when the DF module runs in parallel, as multiple threads
will access different CTUs simultaneously. Suppose that, at a specific time, threadn+1
calculates the BS for V1 in CTU #n+1 and threadn calculates the BS for a certain boundary in
CTU #n. This will cause a data access conflict, because threadn+1 must access TComDataCUn
of CTU #n while it is occupied by threadn.

3.2 Proposed Parallel Scheme
The above analysis causes us to believe that data access conflicts in the parallel DF can be
avoided by modifying the order in which CTUs are accessed. That is, for a single frame,
horizontal filtering is first performed with the CTUs accessed according to the row order.
Vertical filtering is then conducted with the CTUs accessed according to the column order.
This access order is more parallel-friendly than that in the method proposed in [21].
 Based on the above access order, we propose a parallel DF scheme as follows. The filtering
task is divided into several subtasks of equal size in CTU based on the number of threads.
Multiple threads are then simultaneously started to perform horizontal filtering from different
locations of the frame in accordance with the row order. After synchronization, the threads
perform vertical filtering according to the column order. Fig. 7 illustrates this procedure in a
quad-core case. First, four threads perform horizontal filtering in accordance with the order of
the rows. Then, they perform vertical filtering according to the order of the columns. In this
case, no data access conflicts occur among the four concurrent threads; therefore, all four cores
can be effectively used.

T1

T2

T3

T4

T1 T2 T4T3

(a) (b)
Fig. 7. Proposed parallel DF in a quad-core case: (a) parallel horizontal filtering;

(b) parallel vertical filtering

1692 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

 In our scheme, the number of threads may not be the same as the number of rows. Fig. 8(a)
shows the case in which the number of threads is less than the number of rows, whereas in Fig.
8(b) the number of threads is greater than the number of rows. This thread allocation strategy
has two advantages. The first is the flexible DOP, which enables adaptation to different
resolution sequences and processors with different numbers of cores (i.e., dual-core, quad-core,
or octa-core). The second advantage is the finer parallel granularity, namely, the filtering of a
single CTU is treated as an atomic task and assigned to a thread. This achieves better load
balancing than the scheme proposed in [24], where a whole row is assigned to a thread.

T1

T4

T1

T4

T7

T10

T2

T3

T5

T6

T2

T3

T5

T6

T8

T9

T12

T11

(a) (b)
Fig. 8. Parallel horizontal filtering with different numbers of threads:
(a) less than the number of rows, (b) greater than the number of rows

4. Problems Associated with the Parallel Deblocking Filter
In addition to data dependencies, several typical problems related to parallel programming
need to be solved to ensure the parallel DF runs correctly. This section discusses two common
issues, namely the privatization of variables and the synchronization of threads in the
parallelization of the DF.

4.1 Variable Privatization
In the DF module, there are two shared variables that need to be privatized. One stores the
boundary information of the CTU, and the other stores the BS value. The vertical and
horizontal boundary information is stored in a two-dimensional array of length 256 (when the
size of the CTU is 64×64). The value type is Boolean; initially, all elements in the array are
zero (false). After boundary identification, elements for which a boundary exists are assigned
a value of one (true). An example is depicted in Fig. 9.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1693

64
64
×

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) (b)

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1

0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

64
64
×

(d)(c)
Fig. 9. Illustration of the array used to store the vertical boundary information:

(a) CTU and its boundary information, where the solid line represents the partition boundaries of the
PUs and TUs; (b) an array that stores vertical boundary information with elements in the Z scanning

order; (c) an array with elements in raster scan order converted by the Z scanning order; and
(d) the corresponding vertical boundaries of the array

When the DF is applied in non-parallel mode, there is a single main thread. Therefore, the

CTUs in the frame can only be handled one at a time. However, when the parallel DF is
applied, multiple CTUs are processed by multiple threads simultaneously. It is impossible to
store the boundary information of multiple CTUs using only one array. Therefore, a
thread-private array must be maintained to save the boundary information of the CTUs for
each thread. By default, the variables are shared by all threads; thus, the “threadprivate”
directive is added in the parallel DF version to make the array thread-private. Similarly,
another array exists to store the BS. This array must also be privatized.

4.2 Thread Synchronization
A second problem to be solved in the parallelization of the DF is thread synchronization. For
each frame, vertical filtering begins after the completion of horizontal filtering. Thus, the
parallelization of the filtering is divided into two stages: parallel horizontal filtering and
parallel vertical filtering. Multiple concurrent threads must be synchronized once the parallel
horizontal filtering has been completed. These threads are then concurrently started for the
vertical filtering, as shown in Fig. 10. In our solution, an implicit barrier method is adopted to
synchronize these threads.

1694 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

Fork Join Fork Join

Master
Thread

Parallel Horizontal Filtering Parallel Vertical Filtering

Synchronization PointConcurrent Threads

Fig. 10. Illustration of thread synchronization

5. Experiments and Performance Evaluation
This section describes three experiments. First, the filtering effect of the proposed parallel DF
is compared with that of the non-parallel (original) DF to show that the proposed scheme does
not adversely affect the filtering. Second, the acceleration performance of the proposed
parallel DF is tested for various numbers of cores. In each case, the speedup ratio is calculated
and the ability to adapt to different resolution sequences and core numbers is verified
implicitly. Third, the acceleration performance of the proposed scheme is compared with that
of SeparateFiltering [24] to demonstrate the potential of our scheme, especially for load
balancing.

5.1 Experimental Setting
The DF module was parallelized using the OpenMP [30]. After fixing various bugs caused by
parallelization, the evaluations were conducted using HM16.1 (the reference software for
HEVC) [31] and a server with an Intel® CoreTM Xeon E-5 2680 CPU at 2.8 GHz. The test
sequences recommended by JCT-VC were classified into six class (Class A–F) according to
the picture size and their applications, and six of them were selected (one taken from each of
six class) for the tests. To facilitate the comparison of statistics, only the first ten frames of the
sequences were tested under all intra (AI) configurations [32].

5.2 Experimental Results
We evaluated the performance of the parallel DF from two aspects: (1) filtering effect, and (2)
speedup ratio.

The filtering effect was determined indirectly by investigating the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) of the encoded sequence. These two metrics are
used to indicate the objective and subjective video quality, respectively. Specifically, the same
sequence was encoded twice, one through non-parallel filtering, and another through parallel
filtering. The PSNR and the SSIM of the two coded sequences were collected. Table 1 lists the
PSNR and SSIM results about the six sequences. It is evident that both the PSNR and SSIM
perform the same, which implies that the parallelization of the DF does not affect the filtering
performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1695

Table 1. Comparison of encoding performance

Class Sequences Resolution
Non-parallel Parallel

PSNR SSIM PSNR SSIM
A Traffic 2560×1600 37.71 0.94 37.71 0.94
B BasketballDrive 1920×1080 39.01 0.91 39.01 0.91
C BasketballDrill 832×480 36.37 0.89 36.37 0.89
D BasketballPass 416×240 36.50 0.91 36.50 0.91
E FourPeople 1280×720 39.47 0.96 39.47 0.96
F ChinaSpeed 1024×768 38.38 0.96 38.38 0.96

The speedup ratio was measured using the filtering time, namely, the execution time of the

filtering process. Similar to the previous evaluation, the same sequence went through the
processes of non-parallel filtering and parallel filtering. The non-parallel DF was executed
firstly and the filtering time for Class A–F were plotted in Fig. 11, in which the horizontal and
vertical axes stand for the frame number and filtering time, respectively. As expected, the
filtering time increases with the sequence resolution. Moreover, the filtering time of each
frame is approximately equal due to the use of the AI configuration. To ensure the accuracy of
evaluation, the filtering time of the ten frames was averaged and the mean will be used for
calculating the speedup ratio.

Fig. 11. Filtering time of the first ten frames of different test sequences

Then, the parallel DF was conducted with 2, 4, 6, 8, 10 cores respectively. The execution

time was recorded and the speedup ratio can be calculated accordingly, i.e., the ratio of
execution times of non-parallel and parallel DF. The speedup ratios for different numbers of
cores are shown in Fig. 12. As shown in this figure, the DF performance improved
significantly while parallelizing, and the speedup ratio increases as the growth of number of
cores. However, the speedup is not as linear as expected (the trend is clearly shown in Fig. 13),
which is consistent with Amdahl’s law [33].

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
m

s)

Frame number

Class A

Class B

Class C

Class D

Class E

Class F

1696 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

Fig. 12. Speedup ratio obtained after parallelization for different numbers of cores

 It can also be observed that, for a given number of cores, the speedup obtained for sequences
of different resolution varies slightly. In particular, the speedup of the Class D sequence shows
no improvement when going from eight to ten cores, because it is not worthwhile for too many
threads to handle such a low-resolution sequence. In fact, when the program runs in parallel,
the total time spent includes both the program runtime and the time spent starting and
recycling additional threads.
 We also evaluated our parallel scheme by comparing its acceleration performance with that
of the SeparateFiltering scheme proposed in [24]. Both schemes adopt a two-step filtering
method. Test sequences of 1080p and 1600p were used as inputs, and the comparative
experimental results are shown in Fig. 13. It can be seen that our parallel scheme achieves
better acceleration performance, especially with more than six cores. This improvement is
because our scheme effectively prevents data access conflicts and achieves better load
balancing.

Fig. 13. Comparison of our parallel scheme and the SeparateFiltering scheme

0

1

2

3

4

5

6

7

8

1 2 4 6 8 10

Sp
ee

du
p

ra
tio

Number of cores used

Class A

Class B

Class C

Class D

Class E

Class F

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

ra
tio

Number of cores used

Our Parallel
Scheme(1600p)

SeparateFilterin
g (1600p)

Our Parallel
Scheme(1080p)

SeparateFilterin
g (1080p)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1697

6. Conclusion
In this paper, we proposed a parallel scheme to speed up the HEVC DF on a multicore
processor. This scheme is based on a modified order of accessing the CTUs, and enables the
DF to run rapidly in parallel without data access conflicts among multiple concurrent threads,
as well as offering more flexibility in DOP and finer parallel granularity. After various bugs
had been corrected and the problems of variable privatization and thread synchronization had
been solved, the proposed scheme was implemented using OpenMP technology and tested on
a multicore processor. Experimental results showed that the proposed scheme significantly
speeds up the DF compared with the non-parallel DF without any loss of filtering effect and
outperforms a similar parallel scheme.

References
[1] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. Thiow Keng, and T. Wiegand, "Comparison of the

Coding Efficiency of Video Coding Standards-Including High Efficiency Video Coding (HEVC),"
IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1669-1684,
2012. Article(CrossRefLink).

[2] F. Bossen, B. Bross, K. Suhring, and D. Flynn, "HEVC Complexity and Implementation
Analysis," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.
1685-1696, 2012. Article (CrossRef Link).

[3] G. J. Sullivan, J. R. Ohm, H. Woo-Jin, and T. Wiegand, "Overview of the High Efficiency Video
Coding (HEVC) Standard," IEEE Transactions on Circuits and Systems for Video Technology, vol.
22, no. 12, pp. 1649-1668, 2012. Article(CrossRefLink).

[4] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, et al., "HEVC
Deblocking Filter," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no.
12, pp. 1746-1754, 2012. Article(CrossRefLink).

[5] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J. Hoogerbrugge, M. Alvarez, et al., High
Performance Embedded Architectures and Compilers, Springer-Verlag Berlin Heidelberg, New
York, 2009. Article(CrossRefLink).

[6] W. Nan, W. Mei, S. Huayou, R. Ju, and Z. Chunyuan, "A Parallel H.264 Encoder with CUDA:
Mapping and Evaluation," in Proc. of 2012 IEEE 18th International Conference on Parallel and
Distributed Systems (ICPADS) , pp. 276-283, 2012. Article(CrossRefLink).

[7] R. Husemann, V. Roesler, J. V. Lima, and M. Gobbi, "Evaluation of CUDA GPU architecture as
H.264 intra coding acceleration engine," in Proc. of the 19th Brazilian symposium on Multimedia
and the web, pp. 177-180, 2013. Article(CrossRefLink).

[8] E. Baaklini, H. Sbeity, and S. Niar, "H.264 parallel optimization on graphics processors," in Proc.
of 5th International Conferences on Advances in Multimedia, pp. 109-114, April 21-26, 2013.
Article(CrossRefLink)

[9] A. Rodrigues, N. Roma, and L. Sousa, "p264: Open platform for designing parallel H.264/AVC
video encoders on multi-core systems," in Proc. of 20th ACM Workshop on Network and
Operating System Support for Digital Audio and Video, pp. 81-86, June 2- 4, 2010.
Article(CrossRefLink).

[10] C. Yan, Y. Zhang, J. Xu, F. Dai, J. Zhang, Q. Dai, et al., "Efficient Parallel Framework for HEVC
Motion Estimation on Many-Core Processors," IEEE Transactions on Circuits and Systems for
Video Technology, vol. 24, no. 12, pp. 2077-2089, 2014. Article(CrossRefLink).

[11] W. Zhu, J. Pan, H. Guo, and W. Sun, "Parallel optimization of motion estimation for video coding
on cell BE processors," in Proc. of 2014 IEEE International Conference on Multimedia and Expo
Workshops (ICMEW) , pp. 1-6, 2014. Article(CrossRefLink).

[12] B. Wang, M. Alvarez-Mesa, C. C. Chi, and B. Juurlink, "Parallel H.264/AVC Motion
Compensation for GPUs Using OpenCL," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 3, pp. 525-531, 2015. Article(CrossRefLink).

https://doi.org/10.1109/TCSVT.2012.2221192
https://doi.org/10.1109/TCSVT.2012.2221255
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/TCSVT.2012.2223053
https://doi.org/10.1007/978-3-540-92990-1_29
https://doi.org/10.1109/icpads.2012.46
https://doi.org/10.1145/2526188.2526230
http://hgpu.org/?p=9292
https://doi.org/10.1145/1806565.1806586
https://doi.org/10.1109/TCSVT.2014.2335852
https://doi.org/10.1109/ICMEW.2014.6890651
https://doi.org/10.1109/TCSVT.2014.2344512

1698 Lei et al.: Parallel Deblocking Filter Based on Modified Order of Accessing
the Coding Tree Units for HEVC on Multicore Processor

[13] C. Yan, Y. Zhang, F. Dai, J. Zhang, L. Li, and Q. Dai, "Efficient parallel HEVC intra-prediction on
many-core processor," Electronics Letters, vol. 50, no.11, pp. 805-806, 2014.
Article(CrossRefLink).

[14] C. Yan, Y. Zhang, J. Xu, F. Dai, L. Li, Q. Dai, et al., "A Highly Parallel Framework for HEVC
Coding Unit Partitioning Tree Decision on Many-core Processors," IEEE Signal Processing
Letters, vol. 21, no. 5, pp. 573-576, 2014. Article(CrossRefLink).

[15] S. Vijay, C. Chakrabarti, and L. J. Karam, "Parallel deblocking filter for H.264 AVC/SVC," in
Proc. of 2010 IEEE Workshop on Signal Processing Systems (SIPS), pp. 116-121, 2010.
Article(CrossRefLink).

[16] M. Kthiri, P. Kadionik, L. H, x00E, vi, H. Loukil, et al., "A parallel hardware architecture of
deblocking filter in H264/AVC," in Proc. of 2010 9th International Symposium on Electronics and
Telecommunications (ISETC), pp. 341-344, 2010. Article(CrossRefLink).

[17] B. Pieters, C. F. J. Hollemeersch, J. D. Cock, P. Lambert, W. D. Neve, and R. V. d. Walle, "Parallel
Deblocking Filtering in MPEG-4 AVC/H.264 on Massively Parallel Architectures," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 21, no. 1, pp. 96-100, 2011.
Article(CrossRefLink).

[18] Y. Zhang, C. Yan, F. Dai, and Y. Ma, "Efficient Parallel Framework for H.264/AVC Deblocking
Filter on Many-Core Platform," IEEE Transactions on Multimedia, vol. 14, no. 3, pp. 510-524,
2012. Article(CrossRefLink).

[19] B. Pieters, C. Hollemeersch, J. D. Cock, W. D. Neve, P. Lambert, and R. V. d. Walle, "Parallel
deblocking filtering in H.264/AVC using multiple CPUs and GPUs," in Proc. of the 20th ACM
international conference on Multimedia, pp.1013-1016, 2012. Article(CrossRefLink).

[20] D. P. Prasad, S. Sonachalam, M. K. Kunchamwar, and N. R. Gunupudi, "Parallel processing
architecture for H.264 deblocking filter on multi-core platforms," Image Processing: Algorithms
and Systems X; and Parallel Processing for Imaging Applications II, pp. 829512-829512-10, 2012.
Article(CrossRefLink).

[21] M. Ikeda, J. Tanaka, and T. Suzuki, "Parallel deblocking filter," JCTVC-D263, JCT-VC, Daegu,
Kr, 2011.

[22] C. Yan, Y. Zhang, F. Dai, J. Zhang, L. Li, and Q. Dai, "Parallel deblocking filter for HEVC on
many-core processor," Electronics Letters, vol. 50, no. 5, pp. 367-368, 2014.
Article(CrossRefLink).

[23] D. F. d. Souza, N. Roma, and L. Sousa, "Cooperative CPU+GPU deblocking filter parallelization
for high performance HEVC video codecs," in Proc. of 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4993-4997, 2014. Article(CrossRefLink).

[24] A. M. Kotra, M. Raulet, and O. Deforges, "Comparison of different parallel implementations for
deblocking filter of HEVC," in Proc. of 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2721-2725 2013. Article(CrossRefLink).

[25] W. Shen, Q. Shang, S. Shen, Y. Fan, and X. Zeng, "A high-throughput VLSI architecture for
deblocking filter in HEVC," in Proc. of 2013 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 673-676 , 2013. Article(CrossRefLink).

[26] E. Ozcan, Y. Adibelli, and I. Hamzaoglu, "A high performance deblocking filter hardware for High
Efficiency Video Coding," in Proc. of 2013 23rd International Conference on Field
Programmable Logic and Applications (FPL), pp. 1-4, 2013. Article(CrossRefLink).

[27] W. Cheng, Y. Fan, Y. Lu, Y. Jin, and X. Zeng, "A high-throughput HEVC deblocking filter VLSI
architecture for 8kx4k application," in Proc. of 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 605-608, 2015. Article(CrossRefLink).

[28] C. M. Diniz, M. Shafique, F. V. Dalcin, S. Bampi, and J. Henkel, "A deblocking filter hardware
architecture for the high efficiency video coding standard," in Proc. of Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1509-1514, 2015. Article(CrossRefLink).

[29] I. Hautala, J. Boutellier, J. Hannuksela, O. Silv, and x00E, "Programmable Low-Power Multicore
Coprocessor Architecture for HEVC/H.265 In-Loop Filtering," IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 7, pp. 1217-1230, 2015. Article(CrossRefLink).

https://doi.org/10.1049/el.2014.0611
https://doi.org/10.1109/LSP.2014.2310494
https://doi.org/10.1109/SIPS.2010.5624773
https://doi.org/10.1109/ISETC.2010.5679363
https://doi.org/10.1109/TCSVT.2011.2105553
https://doi.org/10.1109/TMM.2012.2190391
https://doi.org/10.1145/2393347.2396370
https://doi.org/10.1117/12.912168
https://doi.org/10.1049/el.2013.3235
https://doi.org/10.1109/ICASSP.2014.6854552
https://doi.org/10.1109/ICASSP.2013.6638151
https://doi.org/10.1109/ISCAS.2013.6571936
https://doi.org/10.1109/FPL.2013.6645602
https://doi.org/10.1109/ISCAS.2015.7168706
https://doi.org/10.7873/DATE.2015.0856
https://doi.org/10.1109/TCSVT.2014.2369744

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1699

[30] OpenMP. OpenMP Specifications [Online]. Available:
http://openmp.org/wp/openmp-specifications/

[31] JCT-VC. Subversion repository for the HEVC test model version HM-16.1 [Online]. Available:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.1/

[32] F. Bossen, "Common Test Conditions and software reference configurations," JCTVC-J1100,
JCT-VC, Stockholm, SE, 2012.

[33] Wikipedia. Amdahl's law [Online]. Available: https://en.wikipedia.org/wiki/Amdahl%27s_law

Haiwei Lei received the B.S. degree in computer software and the M.S. degree in
electronic science and technology from the North University of China, Shanxi, China, in
2002 and 2008, respectively, where he is currently working toward the Ph.D. degree.
Since 2003, he has been engage in teaching and research work in the Department of
Computer Science and Technology, North University of China. His research interests
include video signal processing, 3-D video coding, compressed sensing, and 3-D
measurement.

Wenli Liu received the B.S. degree in safety engineering, the M.S. degree in computer
software, and the Ph.D. degree in instrument science and technology from the North
University of China, Shanxi, China, in 1992, 1998, and 2009, respectively. Since 2009, he
has been a Professor. He served as a Visiting Scientist with the College of Engineering,
Design and Physical Sciences at Brunel University, UK, in 2013. His research interests
include digital signal processing, compression coding, storage testing, and embedded
systems.

Anhong Wang was born in Shanxi Province, P. R. China in 1972. She received B.E.
degree and M.E. degree respectively in 1994 and 2002, both in Electronic Information
Engineering of Taiyuan University of Science and Technology (TYUST). She received
the Ph. D. degree in the Institute of Information Science, Beijing Jiaotong University in
2009. She became an associate professor with TYUST in 2005 and became a full
professor in 2009. She is now the director of Institute of Digital Media and
Communication, TYUST. Her research interest includes image video coding and
transmission, compressed sensing, and secret image sharing. She has published more than
90 papers in international journals and conferences. Now she is leading several research
projects, including two National Science Foundations of China.

