DOI QR코드

DOI QR Code

A Study on a Diagnosis System for HSR Turnout Systems (II)

고속철도 분기기 시스템 진단 시스템에 관한 연구(II)

  • Received : 2017.04.17
  • Accepted : 2017.04.20
  • Published : 2017.04.30

Abstract

The railway turnout system is one of the most important systems that set train routes. Turnout system integrity should be guaranteed for robust train operation. To diagnose the turnout system status, LVDT and accelerometers are installed on a turnout system in a high speed line. The LVDT and accelerometers produce signals containing physical meaning of the turnout systems. The LVDT produces the displacement of the rail gauge and vibration when point moving or a train passes on turnout systems and the accelerometer produces impact forces induced by wheel sets. We performed data extraction from the measured signals and parameterized the extracted signals into meaningful quantities. The parameters are used for classifying whether the turnout status is normal. We proposed two methods for the classification, one uses probabilistic distribution and the other artificial neuron networks. The probabilistic distribution is used for the parameter being classified by the quantities and the artificial neuron networks for the form classification. Finally, we show how to learn the normal status of a turnout system.

철도에 사용되고 있는 분기기는 중요한 시스템 중 하나이다. 분기기 시스템의 건전성은 철도운용 안정성에 매우 중요하다. 분기기 시스템을 진단하기 위하여, LVDT와 accelerometer를 분기기에 설치하였다. LVDT는 분기기에서 변위가 발생하는 부분에 설치하여, 분기기의 이동과 차량의 주행에서 발생되는 변위를 측정하였다. Accelerometers는 충격과 진동이 발생하는 부분에 설치하여 충격량과 진동을 측정하였다. 측정된 데이터를 이용하여 변수화를 위한 데이터를 추출하였으며, 이 변수들은 진단에 사용하였다. 진단 알고리즘은 확률분포와 인공신경망을 사용하였다. 변수화된 값이 확률분포를 이용하여 판단할 수 있으면 확률분포를 사용하였으며, 형태를 보고 판단할 필요가 있으면 인공신경망을 활용하였다. 본 논문에서는 정상적인 상태에서 데이터를 측정하여, 정상상태의 조건을 위한 학습을 수행하였다.

Keywords

References

  1. H. Bai, C. Roberts, C. Goodman (2008) A Generic Fault Detection and Diagnosis Approach for Railway Assets, University of Birmingham UK, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4730853 (Accessed 16 January 2017)
  2. A. Ekberg, B. Paulsson (2010) Concluding Technical Report Railway Assets UIC, UIC.
  3. Point Dianostic System SIDIS W (Siemens), https://w3.usa.siemens.com/mobility/us/Documents/en/rail-solutions/rail-automation/signaling- components/sidis-w-en.pdf (Accessed 19 January 2017)
  4. D.J. Pedregal, F.P. Garcia, F. Schmid (2004) RCM predictive maintenance of railway system based on unobserved component models, Reliability Engineering and System Safety, 83, pp. 103-110. https://doi.org/10.1016/j.ress.2003.09.020
  5. Rail Accident Investigation Branch (2007) Derailment at Grayrigg, Department for Transport UK, https://www.gov.uk/raib-reports/derailment-at-grayrigg (Accessed 22 January 2017)
  6. K. Gurney (1997) An Introduction to neural network, UCL Press Limited 11 New Fetter Lane London EC4P 4EE, UCL Press, pp. 1-317.
  7. R. Rojas (1996) Neural Networks, A Systematic Introduction, Springer, Springer-Verlag, Berlin, New-York, pp. 1-502.
  8. B. Krose, P. van der Smagt (1996) An introduction to Nural Networks, University of Amsterdam, Institute of Robotics and System Dynamics German Aerospace Research Establishment, pp. 1-135.
  9. M.T. Hagan, H.B. Demuth, M.H. Beale, O. de Jess (2014) Neural Network Design, Oklahoma State University, 2nd edition. http://dl.acm.org/citation.cfm?id=2721661 (Accessed 6 March 2017)
  10. J.W. Lee, E.-S. Choo, M.-S. Kim, H.-Y. Yoo, C.-S. Mo, E.-S. Son, S.G. Park. (2015) A study on a monitoring system for railway turnout systems, Journal of the Korea Society for Railway, 18(5), pp. 439-446. https://doi.org/10.7782/JKSR.2015.18.5.439