DOI QR코드

DOI QR Code

경사제 피복재의 누적피해를 이산시간 확률과정으로 고려한 조건기반 유지관리의 할인비용모형

Discounted Cost Model of Condition-Based Maintenance Regarding Cumulative Damage of Armor Units of Rubble-Mound Breakwaters as a Discrete-Time Stochastic Process

  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University) ;
  • Park, Dong-Heon (Department of Civil Engineering, Kangwon National University)
  • 투고 : 2017.04.13
  • 심사 : 2017.04.25
  • 발행 : 2017.04.30

초록

경사제 피복재를 예방적으로 유지관리할 수 있는 조건기반 할인비용모형을 제안하였다. 하중발생 사상을 이산시간 확률과정으로 고려하는 추계학적 누적 피해모형과 보수보강 비용에 대한 경제성 모형을 결합하여 수학적으로 유도하였다. 특히 본 논문에서 유도된 조건기반 유지관리의 할인비용모형은 시간에 따른 비용의 가치 뿐만 아니라 누적피해의 비선형성도 고려할 수 있다. 본 연구의 결과는 기존 모형들의 결과와 비교하여 만족스럽게 검증되었다. 또한 구조물의 중요도와 이자율 변화에 대한 민감도 분석도 수행하여, 구조물의 중요도가 높아질수록 예방적 보수보강의 최적시기는 빨라지나 이자율은 커질수록 반대의 경향이 나타난다는 것을 알았다. 한편 본 연구에서 유도된 추계학적 기대비용모형을 이용하여 여러 조건에 대하여 임의의 경사제 피복재 단면을 해석하였다. 표본경로기법을 적용하여 임의의 태풍 내습에 따른 경사제 피복재의 기대 누적피해수준을 예측하여 피해강도함수의 계수들을 추정할 수 있었다. 특히 하중발생 과정을 HPP(Homogeneous Poisson Process) 뿐만 아니라 DSPP(Doubly Stochastic Poisson Process)로도 해석하여 기대 누적피해수준에 미치는 하중발생의 불확실성에 대한 영향을 분석하여 하중발생사상을 이산시간 확률과정으로 고려해도 된다는 것을 확인하였다. 조건기반 할인비용모형의 해석 결과에 의하면 경사제 피복재의 설계조건에 따라 기대 누적피해수준의 거동특성이 크게 달라지고 이에 따라 예방적 보수보강을 수행하는 최적시기도 변한다는 것을 알 수 있었다. 마지막으로 파괴한계, 구조물의 중요도 그리고 이자율을 변화시키면서 예방적 유지관리를 가장 경제적으로 수행할 수 있는 최적시점과 피해규모를 결정할 수 있었다.

A discounted cost model for preventive maintenance of armor units of rubble-mound breakwaters is mathematically derived by combining the deterioration model based on a discrete-time stochastic process of shock occurrence with the cost model of renewal process together. The discounted cost model of condition-based maintenance proposed in this paper can take into account the nonlinearity of cumulative damage process as well as the discounting effect of cost. By comparing the present results with the previous other results, the verification is carried out satisfactorily. In addition, it is known from the sensitivity analysis on variables related to the model that the more often preventive maintenance should be implemented, the more crucial the level of importance of system is. However, the tendency is shown in reverse as the interest rate is increased. Meanwhile, the present model has been applied to the armor units of rubble-mound breakwaters. The parameters of damage intensity function have been estimated through the time-dependent prediction of the expected cumulative damage level obtained from the sample path method. In particular, it is confirmed that the shock occurrences can be considered to be a discrete-time stochastic process by investigating the effects of uncertainty of the shock occurrences on the expected cumulative damage level with homogeneous Poisson process and doubly stochastic Poisson process that are the continuous-time stochastic processes. It can be also seen that the stochastic process of cumulative damage would depend directly on the design conditions, thus the preventive maintenance would be varied due to those. Finally, the optimal periods and scale for the preventive maintenance of armor units of rubble-mound breakwaters can be quantitatively determined with the failure limits, the levels of importance of structure, and the interest rates.

키워드

참고문헌

  1. Bouvard, K., Artus, S., Berenguer, C. and Cocquempot, V. (2011). Condition-based dynamic maintenance operations planning and grouping; application to commercial heavy vehicles. Rel. Eng. and Sys. Saf., 96, 601-610. https://doi.org/10.1016/j.ress.2010.11.009
  2. British Standards Institution (1984). BS3811 Glossary of maintenance terms in Terotechnology, BSI, London.
  3. Castillo, C., Castillo, E., Fernandez-Canteli, A., Molina, R. and Gomez, R. (2012). Stochastic model for damage accumulation in rubble-mound breakwaters based on compatibility conditions and central limit theorem. J. Waterway, Port, Coast., and Ocn. Eng., ASCE, 138(6), 451-463. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000146
  4. Chien, Y.H., Sheu, S.H. and Zhang, Z.G. (2012). Optimal maintenance policy for a system subject to damage in a discrete time process. Rel. Eng. and Sys. Saf., 103, 1-10. https://doi.org/10.1016/j.ress.2012.03.002
  5. Deloux, E., Castanier, B. and Berenguer, C. (2009). Predictive maintenance policy for a gradually deteriorating system subject to stress. Rel. Eng. and Sys. Saf., 94, 418-431. https://doi.org/10.1016/j.ress.2008.04.002
  6. Dovan, P. and Berenguer, C. (2010). Condition based maintenance model for a production deteriorating system. IEEE Conf. on Control and Fault-Tolerant Systems, 122-128.
  7. Fouladirad, M. and Grall, A. (2011). Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition. Rel. Eng. and Sys. Saf., 96, 611-618. https://doi.org/10.1016/j.ress.2010.12.008
  8. Ito, K. and Nakagawa, T. (2011). Comparison of three cumulative damage models. Qual. Tch. & Quant. Mang., 8(1), 57-66.
  9. Kahle, W. and Wendt, H. (2004). On a cumulative damage process and resulting first passage times. Appl. Stochastic Models Bus. Ind., 20, 17-26. https://doi.org/10.1002/asmb.511
  10. Lee, C.-E. (2012). Stochastic reliability analysis of armor units of rubble-mound breakwaters subject to multiple loads. Journal of the Korean Society of Coastal and Ocean Engineers, 24(2), 138-148 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.2.138
  11. Lee, C.-E. (2013a). Development of stochastic expected cost model for preventive optimal maintenance of armor units of rubblemound breakwaters. Journal of the Korean Society of Coastal and Ocean Engineers, 25(5), 276-284 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.5.276
  12. Lee, C.-E. (2013b). Development of stochastic Markov process model for maintenance of armor units of rubble-mound breakwaters. Journal of the Korean Society of Coastal and Ocean Engineers, 25(2), 52-62 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.2.52
  13. Lee, C.-E. and Kim, S.U. (2013). Stochastic probability model for preventive management of armor units of rubble-mound breakwaters. Journal of the Korean Society of Civil Engineers, 33(3), 1007-1015 (in Korean). https://doi.org/10.12652/Ksce.2013.33.3.1007
  14. Lee, C.-E., Kim, G. and Kim, S.U. (2013). Stochastic reliability analysis of armor units of rubble-mound breakwaters under the multiple loads. J. of Coastal Res., 65, 308-313. https://doi.org/10.2112/SI65-053.1
  15. Lee, C.-E. (2015). Estimation of time-dependent damage paths of armors of rubble-mound breakwaters using stochastic processes. Journal of the Korean Society of Coastal and Ocean Engineers, 27(4), 246-257 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.246
  16. Melby, J.A. (1999). Damage progression on breakwaters. Ph.D. thesis, Dept. of Civ. Engrg., Univ. of Delware, USA.
  17. Melby, J.A. (2005). Damage development on stone-armored breakwaters and revetments. ERDC/CHL CHETN-III-64, US Army Corps of Engineers.
  18. Niu, G., Yang, B.S. and Pecht, M. (2010). Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Rel. Eng. and Sys. Saf., 95, 789-796.
  19. Park, D.H. (2016). Optimization model on preventive maintenance of armor units of rubble-mound breakwaters using compound Poisson process. Ph.D. thesis, Dept. of Civ. Engrg., KNU, Korea (in Korean).
  20. PIANC (1992). Analysis of rubble mound breakwaters. Supplement to Bull. N. 78/79, Brussels, Belgium.
  21. Ross, S.M. (1980). Introduction to probability models. Academic Press, N.Y.
  22. Tian, Z. and Liao, H. (2011). Condition based maintenance optimization for multi-component systems using proportional hazards model. Rel. Eng. and Sys. Saf., 96, 581-589. https://doi.org/10.1016/j.ress.2010.12.023
  23. Tinga, T. (2010). Application of physical failure models to enable usage and load based maintenance. Rel. Eng. and Sys. Saf., 95, 1061-1075. https://doi.org/10.1016/j.ress.2010.04.015
  24. van der Meer, J.W. (1988). Deterministic and probabilistic design of breakwater armor layers. J. Waterway, Port, Coast., and Ocn. Eng., ASCE, 114(1), 66-80. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  25. Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European J. of Op. Res., 139, 469-489. https://doi.org/10.1016/S0377-2217(01)00197-7
  26. Weide, J.A.M., Pandey, M.D. and Noortwijk, J.M. (2010). Discounted cost model for condition-based maintenance optimization. Rel. Eng. and Sys. Saf., 95, 236-246. https://doi.org/10.1016/j.ress.2009.10.004
  27. Weide, J.A.M. and Pandey, M.D. (2011). Stochastic analysis of shock process and modelling of condition-based maintenance. Rel. Eng. and Sys. Saf., 96, 619-626. https://doi.org/10.1016/j.ress.2010.12.012
  28. Zhao, X., Fouladirad, M., Berenguer, C. and Bordes, L. (2010). Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates. Rel. Eng. and Sys. Saf., 95, 921-934. https://doi.org/10.1016/j.ress.2010.04.005
  29. Zhao, X. and Nakagawa, T. (2010). Optimal replacement policies for damage models with limit number of shocks. Int. J. of Rel. and Qual. Perf., 2, 13-20.