DOI QR코드

DOI QR Code

Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell

고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석

  • Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Kim, Da-Eun (Department of Green Chemical Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 신문식 (상명대학교 공과대학 환경공학과) ;
  • 김다은 (상명대학교 공과대학 그린화학공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2017.04.25
  • Accepted : 2017.04.28
  • Published : 2017.04.30

Abstract

Sulfonated poly(arylene ether sulfone) (SPAES)-3-mercaptopropyl silica gel (3MPTSG) composite membranes with improved oxidative stability were prepared for polymer electrolyte fuel cell application. It has been reported that ether part of main chain of aromatic hydrocarbon based membranes were weak to radical attack to decrease membrane durability. In this study, the hydrophilic inorganic particles were introduced by minimizing a decrease in ion conductivity and increasing an oxidative stability. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and contact angle, etc. As a result, increasing amount of the 3MPTSG resulted in decrease in proton conductivities and water uptakes at 100% R.H. but enhanced thermal and oxidative stabilities.

본 연구에서는 고분자 전해질 연료전지(PEFC)의 전해질막의 화학적 안정성의 향상을 위하여 3-mercaptopropyl silica gel (3MPTSG)과 poly(arylene ether sulfone)(SPAES)을 이용하여 복합막을 제조하였다. 일반적으로 방향족 탄화수소계 고분자막은 전극 부분에서 발생한 라디컬에 의한 고분자 산화가 일어나 내구성이 감소하게 되는데 이는 대부분 주쇄에 포함된 에테르 기 부분의 취약성으로 발생한다. 본 연구에서는 이러한 라디칼에 의한 고분자 주쇄의 산화를 방지하기 위해 친수성의 무기물 입자를 도입하여 이온전도도 감소율을 최소화하고 산화안정성을 높이고자 하였다. 복합막들의 물성 및 전기화학적 특성을 평가하기 위해 접촉각, FT-IR, 이온전도도, 이온교환용량(IEC), 함수율, 열안정성 등을 수행하였다. 실리카의 함량이 0에서 0.5%까지 증가함에 따라 이온전도도 및 함수율은 각각 10% 감소한 0.076 S cm-1 및 16% 감소한 24.6 wt%이었으나, 산화안정성은 10% 향상되었다.

Keywords

References

  1. A. Kraytsberg and E. E. Yair, "Review of advanced materials for proton exchange membrane fuel cells", Energy.Fuel., 12, 7303 (2014).
  2. E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives", Prog. Polym. Sci., 57, 103 (2016). https://doi.org/10.1016/j.progpolymsci.2015.11.004
  3. H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 12, 2780 (2012).
  4. L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell applications", Chem. Eng. J., 204, 87 (2012).
  5. K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energ., 31, 719 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  6. V. S. Bagotsky, "Proton-Exchange Membrane Fuel Cells", pp. 41-69, John Wiley & Sons, New York, NY (2012).
  7. H. J. Lee, Y.-W. Choi, T.-H. Yang, and B. C. Bae, "Hydrocarbon composite membranes with improved oxidative stability for PEMFC", J. Korean Electrochem. Soc., 17, 44 (2014). https://doi.org/10.5229/JKES.2014.17.1.44
  8. J. O. Yuk, S. J. Lee, T.-H. Yang, and B. C. Bae, "Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC", J. Korean Electrochem. Soc., 18, 75 (2015). https://doi.org/10.5229/JKES.2015.18.2.75
  9. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", J. Membr. Sci., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  10. J.-J. Jeong, Y.-C. Shin, M.-S. Lee, D.-H. Lee, I.-C. Na, H. Lee, and K.-P. Park, "Charicteristics of Poly(arylene ehter sulfone) membrane for proton exchange membrane fuel cells", Korean Chem. Eng. Res., 51, 5 (2013).
  11. C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis, and Y. G. Shul, "$SiO_2$/ sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells", J. Membr. Sci., 10, 3665 (2013).
  12. K. Pourzare, Y. Mansourpanah, and S. Farhadi, "Advanced nanocomposite membranes for fuel cell applications: a comprehensive review", Biofuel Res. J., 3, 496 (2016). https://doi.org/10.18331/BRJ2016.3.4.4
  13. C. Wang, S. Wang, L. Peng, J. Zhang, Z. Shao, J. Huang, C. Sun, M. Ouyang, and X. He, "Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications", Energies, 9, 603 (2016). https://doi.org/10.3390/en9080603
  14. S.-M. Park, Y.-W. Choi, T.-H. Yang, J.-S. Park, and S.-H. Kim, "A study on sulfonated poly(arylene ether sulfone) membranes containing two different types of $SiO_2$ for a high temperature and low-humidified polymer electrolyte fuel cell", Korean J. Chem. Eng., 30, 87 (2013). https://doi.org/10.1007/s11814-012-0120-2
  15. M.-S. Shin, G.-H Oh, and J.-S. Park, "Preparation and characterizations of ferroxane-nafion composite membranes for PEMFC", Membr. J., 26, 135 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.135
  16. J. Ren, S. Zhang, Y. Liu, Y. Wang, J. Pang, Q. Wang, and G. Wang, "A novel crosslinking organic- inorganic hybrid proton exchange membrane based on sulfonated poly (arylene ether sulfone) with 4-amino-phenyl pendant group for fuel cell application", J. Membr. Sci., 434, 161 (2013). https://doi.org/10.1016/j.memsci.2013.01.056
  17. S. Y. So, Y. J. Yoon, T.-H. Kim, K. S. Yoon, and Y. T. Hong, "Sulfonated poly(arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells", J. Membr. Sci., 381, 204 (2011). https://doi.org/10.1016/j.memsci.2011.07.024
  18. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, "Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., 303, 258 (2007). https://doi.org/10.1016/j.memsci.2007.07.026