DOI QR코드

DOI QR Code

Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere

산소 분위기 열처리에 따른 ZnO 나노선의 상온 영역에서의 수소가스 검출 특성 향상

  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 강우승 (인하공업전문대학 금속재료과)
  • Received : 2017.04.14
  • Accepted : 2017.04.19
  • Published : 2017.04.30

Abstract

ZnO nanowires were synthesized and annealed at various temperatures of $500-800^{\circ}C$ in oxygen atmosphere to investigate hydrogen gas sensing properties. The diameter and length of the synthesized ZnO nanowires were approximately 50-100 nm and a few $10s\;{\mu}m$, respectively. $H_2$ gas sensing performance of the ZnO nanowires sensor was measured with electrical resistance changes caused by $H_2$ gas with a concentration of 0.1-2.0%. The response of ZnO nanowires at room temperature to 2.0% $H_2$ gas is found to be two times enhanced by annealing process in $O_2$ atmosphere at $800^{\circ}C$. In the current study, the effect of heat treatment in $O_2$ atmosphere on the gas sensing performance of ZnO nanowires was studied. And the underlying mechanism for the sensing improvement of the ZnO nanowires was also discussed.

Keywords

References

  1. W. Cheng, Y. Ju, P. Payamyar, D. Primc, J. Rao, C. Willa, D. Koziej, M. Niederberger, Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing, Angew. Chem. Int. Ed. 54 (2015) 340-344. https://doi.org/10.1002/anie.201408617
  2. S. Kim, Y.-I. Lee, Y.-M. Choi, H.-R. Lim, J.-H. Lim, N.V. Myung, Y.-H. Choa, Thermochemical hydrogen sensor based on chalcogenide nanowire arrays, Nanotechnol. 26 (2015) 145503. https://doi.org/10.1088/0957-4484/26/14/145503
  3. X. Li, Y. Liu, J.C. Hemmingers, R.M. Penner, Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection, ACS Nano 9 (2015) 3215-3225. https://doi.org/10.1021/acsnano.5b00302
  4. J. Fang, L. Levchenko, X. Lu, D. Mariotti, K. Ostrikov, Hierarchical bi-dimensional alumina/palladium nanowire nano-architectures for hydrogen detection, storage and controlled release, Int. J. Hydrog. Energ. 18 (2015) 6165-6172.
  5. J. Chen, K. Wang, L. Hartman, W. Zhou, $H_2S$S Detection by Vertically Aligned CuO Nanowire Array Sensors, J. Phys. Chem. C 112 (2008)16017-16021. https://doi.org/10.1021/jp805919t
  6. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photon. 7 (2013) 752-758. https://doi.org/10.1038/nphoton.2013.191
  7. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett. 10 (2010) 1082-1087. https://doi.org/10.1021/nl100161z
  8. C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells, Adv. Mater. 19 (2007) 4256-4259. https://doi.org/10.1002/adma.200602911
  9. D.J. Sirbuly, A. Tao, M. Law, R. Fan, P. Yang, Multifunctional Nanowire Evanescent Wave Optical Sensors, Adv. Mater. 19 (2007) 61-66. https://doi.org/10.1002/adma.200601995
  10. G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: A review, Anal. Chim. Acta 749 (2012) 1-15. https://doi.org/10.1016/j.aca.2012.08.035
  11. L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang, W. Huang, A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene, Phys. Chem. Chem. Phys. 15 (2013) 17179-17186. https://doi.org/10.1039/c3cp52392f
  12. J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, Z. Hassan, A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays, Sens. Actuators B 176 (2013) 360-367. https://doi.org/10.1016/j.snb.2012.09.081
  13. B. Mondal, B. Basumatari, J. Das, C. Roychaudhury, H. Saha, N. Mukherjee, $ZnO-SnO_2$ based composite type gas sensor for selective hydrogen sensing, Sens. Actuators B194 (2014) 389-396. https://doi.org/10.1016/j.snb.2013.12.093
  14. Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays, Sens. Actuators B 208 (2015) 112-121. https://doi.org/10.1016/j.snb.2014.11.024
  15. S. Park, G.-J. Sun, H. Kheel, W.I. Lee, S. Lee, S.-B. Choi, C. Lee, Synergistic effects of codecoration of oxide nanoparticles on the gas sensing performance of $In_2O_3$ nanorods, Sens. Actuators B227 (2016) 591-599. https://doi.org/10.1016/j.snb.2015.12.098
  16. A. Simimol, N.T. Manikandanath, A.A. Anappara, P. Chowdhury, H.C. Barshilia, Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments, J. Appl. Phys. 116 (2014) 074309. https://doi.org/10.1063/1.4893550
  17. Q. Zhao, X.Y. Xu, X.F. Song, X.Z. Zhang, D.P. Yu, C.P. Li, L. Guo, Enhanced field emission from ZnO nanorods via thermal annealing in oxygen, Appl. Phys. Lett. 88 (2006) 033102. https://doi.org/10.1063/1.2166483