DOI QR코드

DOI QR Code

Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment

16Cr-10Ni-2Mo 스테인리스강의 정전류 실험에 의한 플라즈마 이온질화 온도 변수에 따른 부식 특성

  • Received : 2017.04.17
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

The aim of this paper is to investigate the characteristics of electrochemical corrosion with the plasma ion nitriding temperature for 16Cr-10Ni-2Mo stainless steel. The corrosion behavior was analyzed by means of galvanostatic experiment in natural seawater that applied various current density with plasma ion nitriding temperature parameters. In result of galvanostatic experiment, relatively less surface damage morphology and the less damage depth was observed at a nitrided temperature of $450^{\circ}C$ that measured the thickest nitrided layer(S-phase). On the other hand, the most damage depth and unified corrosion behavior presented at a temperature of $500^{\circ}C$.

Keywords

References

  1. C. Y. Choi, N. H. Kang, and D. G. Nam, Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC, J. Kor. Inst. Surf. Eng 44 (2011) 173-178. https://doi.org/10.5695/JKISE.2011.44.5.173
  2. E. Menthe and K. T. Rie, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surf. Coatings Technol 116-119 (1999) 199-204. https://doi.org/10.1016/S0257-8972(99)00085-7
  3. M. Kuczynska-Wydorska and J. Flis, Corrosion and passivation of low- temperature nitrided AISI 304L and 316L stainless steels in acidified sodium sulphate solution, Corros. Sci 50 (2008) 523-533. https://doi.org/10.1016/j.corsci.2007.07.003
  4. N. Yasumaru, Low-Temperature Ion Nitriding of Austenitic Stainless Steels, Mater. Tran. Jpn. Ins. Mat 39 (1998) 1046-1052.
  5. A. Mendes, C. Scheuer, I. Joanidis, R. Cardoso, M. Mafra, A Klein, and S. Brunatto, Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel, Mater. Res 17 (2014) 100-108. https://doi.org/10.1590/S1516-14392014005000064
  6. Y. Sun and T. Bell, Plasma surface engineering of low alloy steel, Mat. Sci. Eng 140 (1991) 419-434. https://doi.org/10.1016/0921-5093(91)90458-Y
  7. W. J. Yang, M. Zhang, Y. H. Zhao, M. L. Shen, H. Lei, L. Xu, J. Q. Xiao, J. Gong, B. H. Yu, and C. Sun, Enhancement of mechanical property and corrosion resistance of 316 L stainless steels by low temperature arc plasma nitriding, Surf. Coatings Technol 298 (2016) 64-72. https://doi.org/10.1016/j.surfcoat.2016.04.045
  8. Y. Li, Z. Wang and L. Wang, Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Appl. Surf. Sci 298 (2014) 243-250. https://doi.org/10.1016/j.apsusc.2014.01.177
  9. J. Baranowska and B. Arnold, Corrosion resistance of nitrided layers on austenitic steel, Surf. Coatings Technol 200 (2006) 6623-6628. https://doi.org/10.1016/j.surfcoat.2005.11.099
  10. T. Nakanishi, T. Tsuchiyama, H. Mitsuyasu, Y. Iwamoto, and S. Takaki, Effect of partial solution nitriding on mechanical properties and corrosion resistance in a type 316L austenitic stainless steel plate, Mater. Sci. Eng 460-461 (2007) 186-194. https://doi.org/10.1016/j.msea.2007.01.024
  11. S. O. Chong and S. J. Kim, Synergistic damage mechanism of corrosion and cavitation-erosion for plasma ion nitrided 18Cr-8Ni-1.1Mn-0.43C stainless steel in seawater, Jpn. J. Appl. Phys 56 (2017) 01AG03-1-01AG03-5. https://doi.org/10.7567/JJAP.56.01AG03
  12. R. R. M. De Sousa, F. O. De Araujo, J. A. P. Da Costa, R. S. De Sousa, and J. R. C. Alves, Nitriding using cathodic cage technique of martensitic stainless steel AISI 420 with addition of CH4, Revista Matéria, 13 (2008) 342-347. https://doi.org/10.1590/S1517-70762008000200012
  13. H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, and A. Ricard, Progress in the analysis of the mechanisms of ion nitriding, Surf. Coatings Technol 72 (1995) 103-111. https://doi.org/10.1016/0257-8972(94)02339-5
  14. R. Hugon. G. Henrion, and M. Fabry, Diagnostics of a d.c. pulsed- plasma-assisted nitriding process, Surf. Coatings Technol 59 (1991) 82-85.
  15. B. Larisch, U. Brusky, and H. J. Spies, Plasma nitriding of stainless steels at low temperatures, Surf. Coatings Technol 116-119 (1995) 205-211.
  16. G. A. Collins, R. Hutchings, K. T. Short, J. Tendys, X. Li, and M. Samandi, Nitriding of austenitic stainless steel by plasma immersion ion implantation, Surf. Coatings Technol 74-75 (1995) 417-424. https://doi.org/10.1016/0257-8972(95)08370-7
  17. Z. Cheng, C.X. Li, H. Dong, T. Bell, Low temperature plasma nitrocarburising of AISI 316 austenitic stainless steel, Surf. Coatings Technol 191 (2005) 195-200. https://doi.org/10.1016/j.surfcoat.2004.03.004
  18. F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente, and L. C. Casteletti, Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surf. Coatings Technol 204 (2010) 3087-3090. https://doi.org/10.1016/j.surfcoat.2010.02.064
  19. L. Nosei, S. Farina, M. Avalos, L. Nachez, B. J. Gomez, and J. Feugeas, Corrosion behavior of ion nitrided AISI 316L stainless steel, Thin Solid Films 516 (2008) 1044-1050. https://doi.org/10.1016/j.tsf.2007.08.072
  20. L. Poirier, Y. Corre, J. P. Lebrun, Solutions to improve surface hardness of stainless steels without loss of corrosion resistance, Surf. Eng 18 (2002) 439-441. https://doi.org/10.1179/026708402225010100
  21. L. Ferreira, S. Brunatto, and R. Cardoso, Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition, Mater. Res 18 (2015) 622-627. https://doi.org/10.1590/1516-1439.015215
  22. S. L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng 1 (1985) 131-136. https://doi.org/10.1179/sur.1985.1.2.131
  23. Y. Xi, D. Liu, and D. Han, Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature, Surf. Coatings Technol 202 (2008) 2577-2583. https://doi.org/10.1016/j.surfcoat.2007.09.036
  24. P. Corengia, G. Ybarra, C. Monia, A. Cabo, and E. Broitman, Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel, Surf. Coatings Technol 187 (2004) 63-69. https://doi.org/10.1016/j.surfcoat.2004.01.031
  25. I. L. Rosenfeld and I. K. Marshakov, Mechanism of crevice corrosion, Corrosion, 20 (1964) 115-125. https://doi.org/10.5006/0010-9312-20.4.115t
  26. S. O. Chong and S. J. Kim, Optimum temperature on corrosion resistance for plasma ion nitrided 316L stainless steel in sea water solution, Jpn. J. Appl. Phys 56 (2017) 01AC04-1-01AC04-4. https://doi.org/10.7567/JJAP.56.01AC04
  27. A. J. Sedriks, Corrosion of Stainless Steels, 2nd Ed., Wiley-Interscience, New York, (1996) 13-100.
  28. Y. C. Lin and S. C. Chen, Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment, J. Mater. Proc. Technol 138 (2003) 22-27. https://doi.org/10.1016/S0924-0136(03)00043-8
  29. C. R. Clayton and Y. C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, J. Electrochem. Soc 133 (1986) 2465-2473. https://doi.org/10.1149/1.2108451
  30. Y. S. Cho, H. C. Choe, and K. H. Kim, Effects of Ion-Nitriding on the Pitting Behavior of Austenitic Stainless Steels Containing Mo, J. Kor. Corros. Sci. Soc 23 (1994) 179-188.