DOI QR코드

DOI QR Code

Compensation of the Distorted WDM Channels Depending on the Control Position of Net Residual Dispersion in Dispersion-managed Optical Link with the Randomly Distributed SMF Lengths and RDPS

SMF 길이와 RDPS가 랜덤하게 분포하는 분산 제어 광전송 링크에서 전체 잉여 분산 조절 위치에 따른 왜곡된 WDM 채널의 보상

  • Lee, Seong-Real (Division of Navigation Information System, Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 항해정보시스템학부)
  • Received : 2017.03.28
  • Accepted : 2017.04.24
  • Published : 2017.04.30

Abstract

The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}80km$) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) are investigated as a function of the arrangement of SMF and dispersion compensating fiber (DCF) and the control position of net residual dispersion (NRD). It is confirmed that the compensation effect of the distorted WDM channels strongly depends on the arragement of SMF and DCF, rather than the control position of NRD.

단일 모드 광섬유 (SMF; single mode fiber)의 길이와 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)이 랜덤하게 분포하는 광 위상 공액과 결합된 분산 제어 (DM; dispersion management)가 적용된 장거리 (50 fiber spans ${\times}80km$) 전송 링크에서 SMF와 분산 보상 광섬유 (DCF; dispersion compensating fiber) 배열과 전체 잉여 분산 (NRD; net residual dispersion)을 조절하는 위치에 따른 왜곡된 WDM 채널의 보상 특성을 수치적으로 분석해 보았다. NRD 조절 위치는 중계 구간을 구성하는 SMF와 DCF의 배열과 관계되어 있지만, NRD 조절의 구체적 위치보다 중계 구간을 이루는 SMF와 DCF의 배열이 WDM 채널의 수신 성능에 영향을 미치는 것을 확인하였다.

Keywords

References

  1. A. R. Chraplyvy, "Limitations on lightwave communications imposed by optical-fiber nonlinearities," Journal of Lightwave Technology, Vol. 8, No. 10, pp. 1548-1557, 1990. https://doi.org/10.1109/50.59195
  2. X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," Journal of Lightwave Technology., Vol. 24, No. 5, pp. 2038-2044, May 2006. https://doi.org/10.1109/JLT.2006.872278
  3. M. Suzuki and N. Edagawa, "Dispersion-managed high-capacity ultra-long-haul transmission," Journal of Lightwave Technology, Vol. 21, No. 4, pp. 916-929. 2003. https://doi.org/10.1109/JLT.2003.810098
  4. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, "Long-haul DWDM transmission systems employing optical phase conjugation", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 4, pp. 505-520, 2006. https://doi.org/10.1109/JSTQE.2006.876621
  5. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission", Optics Letter, Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  6. P. Minzioni and A. Schiffini, "Unifying theory of compensation techniques for intrachannel nonlinear effects," Optical Express, Vol. 13, No. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  7. S. R. Lee, "Dispersion management and optical phase conjugation in optical transmission links with a randomly distributed single-mode fiber length," Journal of Information and Communication Convergence Engineering, Vol. 11, No. 1, pp. 1-6, 2013. https://doi.org/10.6109/jicce.2013.11.1.001
  8. J. P. Chung and S. R. Lee, "Pseudo-symmetric link configuration in dispersion-managed WDM transmission system with optical phase conjugator," Information, Vol. 17, No. 11B, pp. 5963-5968, Nov. 2014.
  9. S. R. Lee, "Dispersion managed optical transmission links with an artificial distribution of the SMF length and residual dispersion per span," Journal of Information and Communication Convergence Engineering (JICCE), Vol. 12, No. 2, pp. 75-82, June 2014. https://doi.org/10.6109/jicce.2014.12.2.075
  10. S. R. Lee, "Compensation for the distorted WDM channels in the long-haul transmission link with the randomly distributed SMF lengths and RDPS," Journal of Advanced Navigation Technology, Vol. 19, No. 4, pp. 323-329, Aug. 2015. https://doi.org/10.12673/jant.2015.19.4.323
  11. D. M. Rothnie and J. E. Midwinter, "Improved standard fiber performance by positioning the dispersion compensating fiber," Electronics Letters, Vol. 32, No. 20, pp.1907-1908, 1996. https://doi.org/10.1049/el:19961275
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Francisco:CA, Academic Press, 2001.