DOI QR코드

DOI QR Code

Protective Effect of Various Grain Methanolic Extracts against UVB-induced Photo-aging in Human Skin Fibroblasts

인체 피부 섬유아세포에서 자외선 조사에 대한 다양한 곡류 메탄올 추출물의 보호 효과

  • Jeon, Jiyoung (Division of Food and Animal Sciences, Chungbuk National University) ;
  • Yang, Jinwoo (Division of Food and Animal Sciences, Chungbuk National University) ;
  • Sung, Jeehye (Division of Food and Animal Sciences, Chungbuk National University) ;
  • Seong, Yeji (Division of Food and Animal Sciences, Chungbuk National University) ;
  • Jeong, Heon Sang (Division of Food and Animal Sciences, Chungbuk National University) ;
  • Lee, Junsoo (Division of Food and Animal Sciences, Chungbuk National University)
  • 전지영 (충북대학교 식품생명.축산과학부) ;
  • 양진우 (충북대학교 식품생명.축산과학부) ;
  • 성지혜 (충북대학교 식품생명.축산과학부) ;
  • 성예지 (충북대학교 식품생명.축산과학부) ;
  • 정헌상 (충북대학교 식품생명.축산과학부) ;
  • 이준수 (충북대학교 식품생명.축산과학부)
  • Received : 2017.01.20
  • Accepted : 2017.03.01
  • Published : 2017.04.30

Abstract

In the present study, we investigated the protective effect of various grain methanolic extracts against UVB-induced photo-aging in human skin fibroblasts. Various grain methanolic extracts were evaluated for their antioxidant compounds and activities. 2,2-Ddiphenyl-1-picryhydrazyl radical (DPPH) and ABTS 2,2-azino-bris-(3-ethylbenzoth iazoline-6-sulphonic acid) radical cation scavenging activities have been used to measure the relative antioxidant activities of extracts from grains. The content of total polyphenolics in the extracts were evaluated using spectrophotometric methods. Human skin fibroblast (Hs68) cells were pretreated with various grain methanolic extracts ($25{\mu}g/mL$). Skin toxicity was simulated by exposing the cells to UVB ($30mJ/cm^2$) irradiation. In response to the UVB-irradiation, an increased amount of matrix metallo-proteinases (MMPs) release was observed, whereas pretreatment of various grain methanolic extracts significantly inhibited the production of MMP-1 in Hs68 cells. We also found that pretreatment of the extracts significantly decreased UVB-induced reactive oxygen species and significantly increased total collagen content in Hs68 cells. These results provide that grains could be regarded as a potential ingredient in natural cosmetics, used for UVB protection.

본 연구는 국내에서 주로 소비되는 곡류를 사용하여 UVB를 조사한 인체 피부 섬유아세포에서 항산화 효능과 MMP-1 및 수용성 콜라겐의 변화를 측정하여 광노화 억제 효능을 평가하였다. 또한 곡류 추출물의 항산화 활성 및 항산화 성분을 측정하고, 항산화력과 항산화 성분과의 상관성을 비교 분석하였다. 7종의 곡류 추출물(백미, 현미, 보리, 율무, 귀리, 수수, 흑미)은 $30mJ/cm^2$ UVB에 노출된 인체 피부 섬유아세포에서 광노화에 대해 세포 보호효과가 있는 것을 확인하였다. 또한 곡류 추출물의 처리는 UVB 조사에 따른 MMP-1의 생성을 감소시키고, 수용성 콜라겐의 분해를 저해하였으며, ROS의 생성도 억제하였다. 7종의 곡류 메탄올 추출물에 대한 총 폴리페놀 함량을 분석한 결과, 흑미와 수수가 다른 곡류에 비해 높은 항산화 성분을 함유하고 있었으며, DPPH 및 ABTS 라디칼 소거능도 높은 활성을 나타냈다. 곡류 추출물의 항산화 성분과 항산화 활성과의 상관분석 결과, 폴리페놀 함량이 높을수록 DPPH 라디칼 소거능($R^2=0.9936$), ABTS 라디칼 소거능($R^2=0.9456$)이 증가하는 것으로 나타났다. 따라서 곡류 추출물은 항산화 성분을 다량 함유하고 높은 항산화 활성을 지녔으며, UVB 조사에 의한 ROS로부터 보호하여 MMP-1의 생성을 감소시키고, 수용성 콜라겐의 분해를 억제시켜 광노화 보효호과를 나타내는 것을 확인하였다. 본 연구 결과, 곡류 추출믈의 항산화 및 광노화 보호효능 입증으로 곡류 추출물을 항주름 기능성 소재에 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Chatterjee R, Benzinger MJ, Ritter JL, Bissett DL. 1990. Chronic ultraviolet B radiation-induced biochemical changes in the skin of hairless mice. Photochem Photobiol 51:91-97 https://doi.org/10.1111/j.1751-1097.1990.tb01688.x
  2. Choi Y, Jeong HS, Lee J. 2007. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103:1-9 https://doi.org/10.1016/j.foodchem.2006.05.068
  3. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:1-6 https://doi.org/10.1021/jf0115185
  4. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. 2002. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462-1470
  5. Fisher GJ, Talwar HS, Lin J, Lin P, McPhillips F, Wang Z, Li X, Wan Y, Kang S, Voorhees JJ. 1998. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J Clin Invest 101:1432-1440 https://doi.org/10.1172/JCI2153
  6. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. 2012. Skin anti-aging strategies. Dermatoendocrinol. 4:308-319 https://doi.org/10.4161/derm.22804
  7. Hung PV. 2016. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr 52:1-7
  8. Jenkins G. 2002. Molecular mechanisms of skin ageing. Mech Ageing Dev 123:801-810 https://doi.org/10.1016/S0047-6374(01)00425-0
  9. Kahari VM, Saarialho-Kere U. 1997. Matrix metalloproteinases in skin. Exp Dermatol 6:199-213 https://doi.org/10.1111/j.1600-0625.1997.tb00164.x
  10. Kim DO, Lee KW, Lee HJ, Lee CY. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713-3717 https://doi.org/10.1021/jf020071c
  11. Kim OK, Nam DE, Lee MJ, Kang N, Lim JY, Lee J. 2014. Protective effects of green tea seed extract against UVBirradiated human skin fibroblasts. J Korean Soc Food Sci Nutr 43:1-8 https://doi.org/10.3746/jkfn.2014.43.1.001
  12. Lee KE, Mun S, Pyun HB, Kim MS, Hwang JK. 2012. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol Pharm Bull 35:1669-1675 https://doi.org/10.1248/bpb.b12-00037
  13. Lee SM, Lee HB, Lee J. 2006. Comparison of extraction methods for the determination of vitamin E in some grains. J Korean Soc Food Sci Nutr 35:1423-1426
  14. Masteikova R, Muselik J, Bernatoniene J, Majiene D, Savickas A, Malinauskas F, Bernatoniene R, Peciura R, Chalupova Z, Dvorackova K. 2008. Antioxidant activity of tinctures prepared from hawthorn fruits and motherwort herb. Ceska Slov Farm 57:35-38
  15. Oh JH, Chung AS, Steinbrenner H, Sies H, Brenneisen P. 2004. Thioredoxin secreted upon ultraviolet A irradiation modulates activities of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in human dermal fibroblasts. Arch Biochem Biophys 423:218-226 https://doi.org/10.1016/j.abb.2003.12.026
  16. Pillai S, Oresajo C, Hayward J. 2005. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation. Int J Cosmet Sci 27:17-34 https://doi.org/10.1111/j.1467-2494.2004.00241.x
  17. Scharffetter-Kochanek K, Wlaschek M, Briviba K, Sies H. 1993. Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS letters 331:1-3 https://doi.org/10.1016/0014-5793(93)80285-3
  18. Seo SJ, Choi Y, Lee SM, Kong S, Lee J. 2008. Antioxidant activities and antioxidant compounds of some specialty rices. J Korean Soc Food Sci Nutr 37:129-135 https://doi.org/10.3746/jkfn.2008.37.2.129
  19. Sun ZW, Park SY, Hwang ES, Zhang MY, Jin FX, Zhang BC, Yi TH. 2015. Salvianolic acid b protects normal human dermal fibroblasts against ultraviolet B irradiation-induced photoaging through mitogen-activated protein kinase and activator protein-1 pathways. Photochem Photobiol 91:1-8 https://doi.org/10.1111/php.12362
  20. Takema Y, Yorimoto Y, Kawai M, Imokawa G. 1994. Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol 131:641-648 https://doi.org/10.1111/j.1365-2133.1994.tb04975.x
  21. Wang CY, Wu SJ, Shyu YT. 2014. Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. J Biosci Bioeng 117:449-456 https://doi.org/10.1016/j.jbiosc.2013.10.002