DOI QR코드

DOI QR Code

Allergy Immunity Regulation and Synergism of Bifidobacteria

Bifidobacteria의 allergy 면역 조절과 synergism

  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Choi, In Soon (Department of Biological Science, Silla University)
  • 조광근 (경남과학기술대학교 생명과학대학 동물소재공학과) ;
  • 최인순 (신라대학교 의생명과학대학 생명과학과)
  • Received : 2017.03.15
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.

Allergy 질환은 지난 십여년 동안 개발도상국을 포함해서 전 세계적으로 증가하고 있다. Allergy 염증 반응은 수지상 세포와 같은 항원제시 세포에 의한 allergy 항원섭취를 시작으로 하여 Th2 면역 반응에 의해서 일어난다. 장내 미생물은 신체의 대사나 생리적 기능을 조절하고, 생애 초기의 면역 체계 성숙과 일생 동안 면역 체계 항상성 및 상피세포 총체성에 기여한다. Bifidobacteria는 Th1/Th2 balance에 strain-specific 한 면역 자극 특성을 가지며, TSLP와 IgE 발현을 억제 시키고 Flg과 FoxP3 발현을 촉진 시켜 allergy를 완화시킨다. 또한 Unmethylated CpG motif ODN은 B 세포와 수지상 세포의 TLR9에 의해 인식 되어 선천성과 적응성 면역 반응을 유도하고, Clostridium butyricum에 의해서 생산된 butyrate는 수지상 세포의 anti-inflammatory 유전자의 발현을 유도하기 위해 GPR109a signaling pathway를 활성화시키고, GPR43 활성화를 통하여 tTreg 세포 proliferation을 직접 자극하거나 HADC 활성을 억제시켜 Foxp3 gene intronic enhancer의 histone H3 acetylation을 통해 naive $CD4^+$ T 세포를 pTreg 세포로 분화시킨다.

Keywords

References

  1. Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L. and Jenmalm, M. C. 2014. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 44, 842-850. https://doi.org/10.1111/cea.12253
  2. Ahern, P. P., Faith, J. J. and Gordon, J. I. 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity 40, 815-823. https://doi.org/10.1016/j.immuni.2014.05.012
  3. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J. and Rudensky, A. Y. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451-455. https://doi.org/10.1038/nature12726
  4. Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411-420. https://doi.org/10.1038/nri2316
  5. Ballester, M., Jeanbart, L., de Titta, A., Nembrini, C., Marsland, B. J., Hubbell, J. A. and Swartz, M. A. 2015. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Sci. Rep. 5, 14274. https://doi.org/10.1038/srep14274
  6. Bercik, P., Collins, S. M. and Verdu, E. F. 2012. Microbes and the gut-brain axis. Neurogastroenterol. Motil. 24, 405-413. https://doi.org/10.1111/j.1365-2982.2012.01906.x
  7. Bjorksten, B. 2012. Treating childhood allergy with gut microbes: facts or fiction? Br. J. Dermatol. 166, 1-2.
  8. Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L. and Gershwin, M. E. 2009. Probiotics and immunity. J. Gastroenterol. 44, 26-46. https://doi.org/10.1007/s00535-008-2296-0
  9. Campbell, N. A., Reece, J. B., Mitchell, L. G. and Taylor, M. R. 2003. Biology concepts and connections. 5th edition:66.
  10. Chen W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N. McGrady, G. and Wahl, S. M. 2003. Conversion of peripheral CD41CD252 naive T cells to CD41CD251 regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886. https://doi.org/10.1084/jem.20030152
  11. Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M. and Sanz, Y. 2008. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 8, 232. https://doi.org/10.1186/1471-2180-8-232
  12. Collado, M. C., Isolauri, E., Laitinen, K. and Salminen, S. 2010. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92, 1023-1030. https://doi.org/10.3945/ajcn.2010.29877
  13. Cryan, J. F. and O'Mahony, S. M. 2011. The microbiomegut- brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187-192. https://doi.org/10.1111/j.1365-2982.2010.01664.x
  14. Dai, S. Y., Nakagawa, R., Itoh, A., Murakami, H., Kashio, Y., Abe, H., Katoh, S., Kontani, K., Kihara, M., Zhang, S. L., Hata, T., Nakamura, T., Yamauchi, A. and Hirashima, M. 2005. Galectin-9 induces maturation of human monocyte- derived dendritic cells. J. Immunol. 175, 2974-2981. https://doi.org/10.4049/jimmunol.175.5.2974
  15. de Kivit, S., Saeland, E., Kraneveld, A. D., van de Kant, H. J., Schouten, B,, van Esch, B. C., Knol, J., Sprikkelman, A. B., van der Aa, L. B., Knippels, L. M., Garssen, J., van Kooyk, Y. and Willemsen, L. E. 2012. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67, 343-352. https://doi.org/10.1111/j.1398-9995.2011.02771.x
  16. Durre, P. 2014. Physiology and Sporulation in Clostridium. Microbiol. Spectr. 2, TBS-0010-2012.
  17. Enomoto, T., Sowa, M., Nishimori, K., Shimazu, S., Yoshida, A., Yamada, K., Furukawa, F., Nakagawa, T., Yanagisawa, N., Iwabuchi, N., Odamaki, T., Abe, F., Nakayama, J. and Xiao, J. Z. 2014. Effects of Bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol. Int. 63, 575-85. https://doi.org/10.2332/allergolint.13-OA-0683
  18. Ewaschuk, J. B., Backer, J. L., Churchill, T. A., Obermeier, F., Krause, D. O. and Madsen, K. L. 2007. Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect. Immun. 75, 2572-2579. https://doi.org/10.1128/IAI.01662-06
  19. Falony, G., Verschaeren, A., De Bruycker, F., De Preter, V., Verbeke, K., Leroy, F. and De Vuyst, L. 2009. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate- producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl. Environ. Microbiol. 75, 5884-5892. https://doi.org/10.1128/AEM.00876-09
  20. FAO/WHO. 2001. Expert consultation on evaluation of health and nutritional properties of probiotics in food including milk powder with live lactic acid bacteria. FAO/WHO (Food and Agriculture Organization/World Health Organization) Cordoba, Argentina: WHO; http://www.who.int/foodsafety/publications/fs_management/ en/probiotics.pdf.
  21. FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group, 30 April-1 May, Ontario, Canada.
  22. Forsythe, P. 2010. Bienenstock J: Immunomodulation by commensal and probiotic bacteria. Immunol. Invest. 9, 429-448.
  23. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543-547. https://doi.org/10.1038/nature09646
  24. Gueimonde, M., Ouwehand, A., Huhtinen, H., Salminen, E. and Salminen, S. 2007. Qualitative and quantitative analyses of the Bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J. Gastroenterol. 13, 3985-3989. https://doi.org/10.3748/wjg.v13.i29.3985
  25. Hanagata, N. 2012. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int. J. Nanomedicine 7, 2181-2195.
  26. Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. and Welling, G. W. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61-67. https://doi.org/10.1097/00005176-200001000-00019
  27. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. 2004. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192. https://doi.org/10.1038/nm987
  28. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., Yagi, F. and Kasai, K. 2002. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572, 232-254. https://doi.org/10.1016/S0304-4165(02)00311-2
  29. Iijima, K., Kobayashi, T., Hara, K., Kephart, G. M., Ziegler, S.F., McKenzie, A. N. and Kita, H. 2014. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J. Immunol. 193, 1549-1559. https://doi.org/10.4049/jimmunol.1302984
  30. Iliev, I. D., Kitazawa, H., Shimosato, T., Katoh, S., Morita, H., He, F., Hosoda, M. and Saito, T. 2005. Strong immunostimulation in murine immune cells by Lactobacillus hamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cell. Microbiol. 7, 403-414. https://doi.org/10.1111/j.1462-5822.2004.00470.x
  31. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. and Rescigno, M. 2009. Intestinal epithelial cells promote colitis- protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal. Immunol. 2, 340-350. https://doi.org/10.1038/mi.2009.13
  32. Inoue, Y., Iwabuchi, N., Xiao, J. Z., Yaeshima, T. and Iwatsuki, K. 2009. Suppressive effects of Bifidobacterium breve strain M-16V on T-helper type 2 immune responses in a murine model. Biol. Pharm. Bull. 32, 760-763. https://doi.org/10.1248/bpb.32.760
  33. Isa, K., Oka, K., Beauchamp, N., Sato, M., Wada, K., Ohtani, K., Nakanishi, S., McCartney, E., Tanaka, M., Shimizu, T., Kamiya, S., Kruger, C. and Takahashi, M. 2016. Safety assessment of the Clostridium butyricum MIYAIRI $588{(R)}$ probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo. Hum. Exp. Toxicol. 35, 818-32. https://doi.org/10.1177/0960327115607372
  34. Kalliomäki, M., Kirjavainen, P., Eerola, E., Kero, P., Salminen, S. and Isolauri, E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107, 129-134. https://doi.org/10.1067/mai.2001.111237
  35. Kanai, T., Mikami, Y. and Hayashi, A. 2015. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J. Gastroenterol. 50, 928-939. https://doi.org/10.1007/s00535-015-1084-x
  36. Karlsson, H., Hessle, C. and Rudin, A. 2002. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect. Immun. 70, 6688-6696. https://doi.org/10.1128/IAI.70.12.6688-6696.2002
  37. Kerckhoffs, A. P., Samsom, M., van der Rest, M. E., de Vogel, J., Knol, J., Ben-Amor, K. and Akkermans, L. M. 2009. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15, 2887-2892. https://doi.org/10.3748/wjg.15.2887
  38. Kim, D. H., Sohn, J. H., Park, H. J., Lee, J. H., Park, J. W. and Choi, J. M. 2016. CpG Oligodeoxynucleotide inhibits cockroach-induced asthma via induction of IFN-${\gamma}^+$ Th1 cells or $Foxp3^+$ regulatory T cells in the lung. Allergy Asthma. Immunol. Res. 8, 264-75. https://doi.org/10.4168/aair.2016.8.3.264
  39. Kim, I. H., Park, M. S. and Ji, G. E. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte- like Caco-2 cells. J. Microbiol. Biotechnol. 13, 276-281.
  40. Kitazawa, H., Watanabe, H., Shimosato, T., Kawai, Y., Itoh, T. and Saito, T. 2003. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int. J. Food Microbiol. 85, 11-21. https://doi.org/10.1016/S0168-1605(02)00477-4
  41. Klinman, D. M. 2004. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249-258. https://doi.org/10.1038/nri1329
  42. Konieczna, P., Groeger, D., Ziegler, M., Frei, R., Ferstl, R., Shanahan, F., Quigley E. M., Kiely, B., Akdis, C. A. and O'Mahony, L. 2012. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 61, 354-366. https://doi.org/10.1136/gutjnl-2011-300936
  43. Kozakova, H., Schwarzer, M., Tuckova, L., Srutkova, D., Czarnowska, E., Rosiak, I., Hudcovic, T., Schabussova, I., Hermanova, P., Zakostelska, Z., Aleksandrzak-Piekarczyk, T., Koryszewska-Baginska, A., Tlaskalova-Hogenova, H. and Cukrowska, B. 2016. Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell. Mol. Immunol. 13, 251-262. https://doi.org/10.1038/cmi.2015.09
  44. Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Koretzky, G. A. and Klinman, D. M. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549. https://doi.org/10.1038/374546a0
  45. Laffont, S., Siddiqui, K. R. and Powrie, F. 2010. Intestinal inflammation abrogates the tolerogenic properties of MLN $CD103^+$ dendritic cells. Eur. J. Immunol. 40, 1877-1883. https://doi.org/10.1002/eji.200939957
  46. Lee, J., Mo, J. H., Katakura, K., Alkalay, I., Rucker, A. N., Liu, Y. T., Lee, H. K., Shen, C., Cojocaru, G., Shenouda, S., Kagnoff, M., Eckmann, L., Ben-Neriah, Y. and Raz, E. 2006. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327-1336. https://doi.org/10.1038/ncb1500
  47. Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q. and Fan, C. 2011. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783-8789. https://doi.org/10.1021/nn202774x
  48. Liao, H. Y., Tao, L., Zhao, J., Qin, J., Zeng, G. C., Cai, S. W., Li, Y., Zhang, J. and Chen, H. G. 2016. Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients. Sci. Rep. 6, 20481. https://doi.org/10.1038/srep20481
  49. Ling, Z., Liu, X., Cheng, Y., Luo, Y., Yuan, L., Li, L. and Xiang, C. 2015. Clostridium butyricum combined with Bifidobacterium infantis probiotic mixture restores fecal microbiota and attenuates systemic inflammation in mice with antibiotic-associated diarrhea. Biomed. Res. Int. 2015, 582048.
  50. Maloy, K. J. and Powrie, F. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298-306. https://doi.org/10.1038/nature10208
  51. Marsland, B. J. and Salami, O. 2015. Microbiome influences on allergy in mice and humans. Curr. Opin. Immunol. 36, 94-100. https://doi.org/10.1016/j.coi.2015.07.005
  52. Menard, O., Butel, M. J., Gaboriau-Routhiau, V. and Waligora-Dupriet, A. J. 2008. Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl. Environ. Microbiol. 74, 660-666. https://doi.org/10.1128/AEM.01261-07
  53. Menard, O., Gafa, V., Kapel, N., Rodriguez, B., Butel, M. J. and Waligora-Dupriet, A. J. 2010. Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl. Environ. Microbiol. 76, 2846-2855. https://doi.org/10.1128/AEM.01714-09
  54. Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J. F., Rougeot, C., Pichelin, M., Cazaubiel, M. and Cazaubiel, J. M. 2011. Assessment of psychotropic- like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755-764. https://doi.org/10.1017/S0007114510004319
  55. Milani, C., Lugli, G. A., Duranti, S., Turroni, F., Bottacini, F., Mangifesta, M., Sanchez, B., Viappiani, A., Mancabelli, L., Taminiau, B., Delcenserie, V., Barrangou, R., Margolles, A., van Sinderen, D. and Ventura, M. 2014. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80, 6290-6302. https://doi.org/10.1128/AEM.02308-14
  56. Mileti, E., Matteoli, G., Iliev, I. D. and Rescigno, M. 2009. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 4, e7056. https://doi.org/10.1371/journal.pone.0007056
  57. Mylonaki, M., Rayment, N. B., Rampton, D. S., Hudspith, B. N. and Brostoff, J. 2005. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm. Bowel. Dis. 11, 481-487. https://doi.org/10.1097/01.MIB.0000159663.62651.4f
  58. Narushima, S., Sugiura, Y., Oshima, K., Atarashi, K., Hattori, M., Suematsu, M. and Honda, K. 2014. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333-339. https://doi.org/10.4161/gmic.28572
  59. NCBI. 2017. https://www.ncbi.nlm.nih.gov/pubmed.
  60. Neujahr, D. C., Reich, C. F. and Pisetsky, D. S. 1999. Immunostimulatory properties of genomic DNA from different bacterial species. Immunobiology 200, 106-119. https://doi.org/10.1016/S0171-2985(99)80036-9
  61. Nishikawa, M., Matono, M., Rattanakiat, S., Matsuoka, N. and Takakura, Y. 2008. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology 124, 247-255. https://doi.org/10.1111/j.1365-2567.2007.02762.x
  62. Nishikawa, M., Mizuno, Y., Mohri, K., Matsuoka, N., Rattanakiat, S., Takahashi, Y., Funabashi, H., Luo, D. and Takakura, Y. 2011. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials 32, 488-494. https://doi.org/10.1016/j.biomaterials.2010.09.013
  63. Nylund, L., Nermes, M., Isolauri, E., Salminen, S., de Vos, W. M. and Satokari, R. 2015. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 70, 241-244. https://doi.org/10.1111/all.12549
  64. Penders, J., Gerhold, K., Stobberingh, E. E., Thijs, C., Zimmermann, K., Lau, S. and Hamelmann, E. 2013. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J. Allergy Clin. Immunol. 132, 601-607. https://doi.org/10.1016/j.jaci.2013.05.043
  65. Perrier, C. and Corthesy, B. 2011. Gut permeability and food allergies. Clin. Exp. Allergy 41, 20-28. https://doi.org/10.1111/j.1365-2222.2010.03639.x
  66. Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F. and Matuchansky, C. 2005. Review article: Bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22, 495-512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
  67. Rabinovich, G. A. and Toscano, M. A. 2009. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338-352. https://doi.org/10.1038/nri2536
  68. Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. and Takakura, Y. 2009. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701-5706. https://doi.org/10.1016/j.biomaterials.2009.06.053
  69. Riviere, A., Selak, M., Lantin, D., Leroy, F. and De Vuyst, L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979.
  70. Saarialho-Kere, U. 2004. The gut-skin axis. J. Pediatr. Gastroenterol. Nutr. 39, S734-S735. https://doi.org/10.1097/00005176-200406003-00009
  71. Schmidt, M., Anton, K., Nordhaus, C., Junghans, C. and Wittig, B. and Worm, M. 2006. Cytokine and Ig-production by CG-containing sequences with phosphorodiester backbone and dumbbell-shape. Allergy 61, 56-63. https://doi.org/10.1111/j.1398-9995.2005.00908.x
  72. Schwarz, K., Storni, T., Manolova, V., Didierlaurent, A., Sirard, J. C., Röthlisberger, P. and Bachmann, M. F. 2003. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur. J. Immunol. 33, 1465-1470. https://doi.org/10.1002/eji.200323919
  73. Schwarzer, M., Srutkova, D., Schabussova, I., Hudcovic, T., Akgun, J., Wiedermann, U. and Kozakova, H. 2013. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 31, 5405-5412. https://doi.org/10.1016/j.vaccine.2013.09.014
  74. Shimosato, T., Kitazawa, H., Katoh, S., Tohno, M., Iliev, I. D., Nagasawa, C., Kimura, T., Kawai, Y. and Saito, T. 2005. Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochem. Biophys. Res. Commun. 326, 782-787. https://doi.org/10.1016/j.bbrc.2004.11.119
  75. Shi, Y., Xu, L. Z., Peng, K., Wu, W., Wu, R., Liu, Z. Q., Yang, G., Geng, X. R., Liu, J., Liu, Z. G., Liu, Z. and Yang, P. C. 2015. Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. Sci. Rep. 5, 17651.
  76. Shin, J. H., Chung, M. J. and Seo, J. G. 2016. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of $CD4^+$ $Foxp3^+$ T cells. Food. Nutr. Res. 60, 32550 https://doi.org/10.3402/fnr.v60.32550
  77. Singh, Y., Ahmad, J., Musarrat, J., Ehtesham, N. Z. and Hasnain, S. E. 2013. Emerging importance of holobionts in evolution and in probiotics. Gut Pathog. 5, 12. https://doi.org/10.1186/1757-4749-5-12
  78. Tan, J., McKenzie, C., Vuillermin, P. J., Goverse, G., Vinuesa, C. G., Mebius, R. E., Macia, L. and Mackay, C. R. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809-2824. https://doi.org/10.1016/j.celrep.2016.05.047
  79. Takahashi, N., Kitazawa, H., Shimosato, T., Iwabuchi, N., Xiao, J. Z., Iwatsuki, K., Kokubo, S. and Saito, T. 2006. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunol. Med. Microbiol. 46, 461-469. https://doi.org/10.1111/j.1574-695X.2006.00064.x
  80. Tissier, H. 1906. Traitement des infections intestinales par la méthod de la flore bactérienne de línstein. Crit. Rev. Soc. Biol. 60, 359-361.
  81. Tojo, R., Suarez, A., Clemente, M. G., de los Reyes-Gavilan, C. G., Margolles, A., Gueimonde, M. and Ruas-Madiedo, P. 2014. Intestinal microbiota in health nd disease: Role of Bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163-15176. https://doi.org/10.3748/wjg.v20.i41.15163
  82. Tokunaga, T., Yamamoto, H., Shimada, S., Abe, H., Fukuda, T., Fujisawa, Y., Furutani, Y., Yano, O., Kataoka, T. and Sudo, T., et al. 1984. Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG: I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst. 72, 955-962.
  83. Turroni, F., Marchesi, J. R., Foroni, E., Gueimonde, M., Shanahan, F., Margolles, A., van Sinderen, D. and Ventura, M. 2009. Microbiomic analysis of the Bifidobacterial population in the human distal gut. ISME J. 3, 745-751. https://doi.org/10.1038/ismej.2009.19
  84. Uehara, A., Fujimoto, Y., Fukase, K. and Takada, H. 2007. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44, 3100-3111. https://doi.org/10.1016/j.molimm.2007.02.007
  85. Vanderpool, C., Yan, F. and Polk, D. B. 2008. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel. Dis. 14, 1585-1596. https://doi.org/10.1002/ibd.20525
  86. Vasiljevic, T. and Shah, N. P. 2008. Probiotics-from Metchnikoff to bioactives. Int. Dairy J. 18, 714-728. https://doi.org/10.1016/j.idairyj.2008.03.004
  87. Ventura, M., Turroni, F. and van Sinderen, D. 2012. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng. Bugs. 3, 73-79.
  88. Wang, J., Wen, L., Wang, Y. and Chen, F. 2016. Therapeutic Effect of Histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis in vivo. DNA Cell Biol. 35, 203-208. https://doi.org/10.1089/dna.2015.3037
  89. Wang, J. and Sampson, H. A. 2011. Food allergy. J. Clin. Invest. 121, 827-835. https://doi.org/10.1172/JCI45434
  90. Watson, J. L. and McKay, D. M. 2006. The immunophysiological impact of bacterial CpG DNA on the gut. Clin. Chim. Acta. 364, 1-11. https://doi.org/10.1016/j.cca.2005.05.017
  91. Zhang, H. and Gao, X. D. 2017. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater. Sci. Eng. C. Mater Biol. Appl. 70, 935-946. https://doi.org/10.1016/j.msec.2016.03.045

Cited by

  1. Anti-Inflammatory Effects of a Mixture of Lactic Acid Bacteria and Sodium Butyrate in Atopic Dermatitis Murine Model vol.21, pp.7, 2018, https://doi.org/10.1089/jmf.2017.4116