DOI QR코드

DOI QR Code

폴리페놀 화합물과 항생제의 상호작용

Interaction with Polyphenols and Antibiotics

  • 조지중 (경남과학기술대학교 제약공학과) ;
  • 김혜수 (경남과학기술대학교 제약공학과) ;
  • 김철환 (경남과학기술대학교 제약공학과) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Cho, Ji Jong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Hye Soo (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Chul Hwan (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2017.04.11
  • 심사 : 2017.04.27
  • 발행 : 2017.04.30

초록

항산화, 항알러지, 항염증, 항암, 항고혈압, 항균 활성을 나타내는 폴리페놀 화합물은 고등식물에 의해 생산되는 2차 대사산물이다. 일반적으로 폴리페놀 화합물은 플라보노이드와 비 플라보노이드 화합물로 나뉘며 병원균에 대한 항균활성은 비 플라보노이드 화합물에 비해 플라보노이드 화합물이 우수하다. 항균활성을 나타내는 플라보노이드 화합물은 칼콘, 플라반-3-올(카테킨), 플라바논, 플라본, 플라보놀, 프로안토시아니딘 등이며 플라보놀 화합물은 그람 음성 세균(Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica, Prevotella oralis)과 그람 양성 세균(Actinomyces naeslundii, Lactobacillus acidophilus, Staphylococcus aureus)에 대해 항균활성을 나타낸다. 비 플라보노이드 화합물 중에서 항균활성을 나타내는 화합물은 커피산, 갈릭산, 페룰산 등이며 그람 양성 세균(Listeria monocytogenes, S. aureus)과 그람 음성 세균(Escherichia coli, Pseudomonas aeruginosa)에 대해 젠타마이신, 스트렙토마이신보다 우수한 항균활성을 나타낸다. 플라본 화합물인 캠퍼롤과 퀘세틴은 단독 사용보다는 리팜피신, 시플록사신과 병용하였을 떄 S. aureus와 메티실린 내성 S. aureus (MRSA)에 대해 시너지 효과를 나타내었고, 에피갈로카테킨 갈레이트(EGCG)는 베타락탐계 항생제와 병용했을 때 MRSA 에 대한 대해 시너지 효과를 나타내었다. 특히 한국 녹차에서 분리된 에피카테킨, 에피갈로카테킨, 에피갈로카테킨 갈레이트, 갈로카테킨 갈레이트 등의 차 폴리페놀류는 임상에서 분리한 MRSA에 대해 항균활성을 나타내었고 옥사실린과 병용했을 때 시너지 효과를 나타내었다.

Polyphenols are secondary metabolites produced by higher plants and have been used as antiallergic, anticancer, antihypertensive, antiinflammatory, antimicrobial and antioxidant agents. They are generally divided into flavonoids and non-flavonoids. The antimicrobial activity of flavonoids are stronger than that of non-flavonoids. The skeleton structures of flavonoids possessing antimicrobial activity are chalcone, flavan-3-ol (catechin), flavanone, flavone, flavonol and proanthocyanidin. The flavonols are shown antibacterial activity against several gram-positive bacteria (Actinomyces naeslundii, Lactobacillus acidophilus and Staphylococcus aureus) and gram-negative bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella melaninogenica and Prevotella oralis). Among of non-flavonoids, caffeic acids, ferulic acids and gallic acids showed antimicrobial activity against gram-positive (Listeria monocytogenes and S. aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). These are found to be more efficient against the E. coli, L. monocytogenes, P. aeruginosa and S. aureus than antibiotics such as gentamicin and streptomycin. The kaempferol and quercetin showed synergistic effect with ciprofloxacin and rifampicin against S. aureus and methicillin resistant S. aureus (MRSA). Epigallocatechin gallate (EGCG) acts synergistically with various ${\beta}-lactam$ antibiotics against MRSA. In particular, the epicatechin, epigallocatechin (EGC), EGCG and gallocatechin gallate from Korean green tea has antibacterial activity against MRSA clinical isolates and the combination of tea polyphenols and oxacillin was synergistic for all the clinical MRSA isolates.

키워드

참고문헌

  1. Ahn, Y. J., Kawamura, T., Kim, M., Yamamoto, T. and Mitsuoka, T. 1991. Tea polyphenols: selective growth inhibitors of Clostridium spp. Agric. Biol. Chem. 55, 1425-1426. https://doi.org/10.1080/00021369.1991.10870770
  2. Alvarez, M. D., Zarelli, V. E. P., Pappano, N. B. and Debattista, N. B. 2004. Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli. Biocell 28, 31-34.
  3. Alvesalo, J., Vuorela, H., Tammela, P., Leinonen, M., Saikku, P. and Vuorela, P. 2006. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem. Pharmacol. 71, 735-741. https://doi.org/10.1016/j.bcp.2005.12.006
  4. Avila, H. P., Smania, E., Monache, F. D. and Smania Junior, A. 2008. Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 16, 9790-9794. https://doi.org/10.1016/j.bmc.2008.09.064
  5. Bernal, P., Zloh, M. and Taylor, P. W. 2009. Disruption of D-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the ${\beta}$-lactam resistance modifier (-)-epicatechin gallate. J. Antimicrob. Chemother. 63, 1156- 1162. https://doi.org/10.1093/jac/dkp094
  6. Bernard, F. X., Sable, S., Cameron, B., Provost, J., Desnottes, J. F., Crouzet, J. and Blanche, F. 1997. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents. Chemother. 41, 992-998.
  7. Borris, R. P. 1996. Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol. 51, 29-38. https://doi.org/10.1016/0378-8741(95)01347-4
  8. Brown, J. P. 1980. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat. Res. 75, 243-277. https://doi.org/10.1016/0165-1110(80)90029-9
  9. Choi, O., Yahiro, K., Morinaga, N., Miyazaki, M. and Noda, M. 2007. Inhibitory effects of various plant polyphenols on the toxicity of staphylococcal ${\alpha}$-toxin. Microb. Pathog. 42, 215-224. https://doi.org/10.1016/j.micpath.2007.01.007
  10. Cote, J., Caillet, S., Doyon, G., Sylvain, J. F. and Lacroix, M. 2010. Bioactive compounds in cranberries and their biological properties. Crit. Rev. Food Sci. Nutr. 50, 666-679. https://doi.org/10.1080/10408390903044107
  11. Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcao- Silva, V. S. and Siqueira-Junior, J. P. 2008. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 54, 328-330. https://doi.org/10.1159/000151267
  12. Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcao- Silva, V. S. and Siqueira Junior, J. P. 2009. Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin-resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement. Altern. Med. 9, 13-35. https://doi.org/10.1186/1472-6882-9-13
  13. Cushnie, T. P. T. and Lamb, A. J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  14. Cushnie, T. P. T., Hamilton, V. E. S., Chapman, D. G., Taylor, P. W. and Lamb, A. J. 2007. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 103, 1562-1567. https://doi.org/10.1111/j.1365-2672.2007.03393.x
  15. Cushnie, T. P. T. and Lamb, A. J. 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 38, 99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  16. D'Arrigo, M., Ginestra, G., Mandalari, G., Furneri, P. M. and Bisignano, G. 2010. Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine 17, 317-322. https://doi.org/10.1016/j.phymed.2009.07.008
  17. Delehanty, J. B., Johnson, B. J., Hickey, T. E., Pons, T. and Ligler, F. S. 2007. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J. Nat. Prod. 70, 1718-1724. https://doi.org/10.1021/np0703601
  18. Diker, K. S., Akan, M., Hascelik, G. and Yurdakok, M. 1991. The bacterial activity of tea against Campylobacter jejuni and Campylobacter coli. Lett. Appl. Microbiol. 12, 34-35. https://doi.org/10.1111/j.1472-765X.1991.tb00496.x
  19. Dixon, R. A., Xie, D. Y. and Sharma, S. B. 2005. Proanthocyanidins-a final frontier in flavonoid research? New Phytol. 165, 9-28.
  20. Engels, C., Schieber, A. and Ganzle, M. G. 2011. Studies on the inhibitory spectrum and mode of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl. Environ. Microbiol. 77, 2215-2223. https://doi.org/10.1128/AEM.02521-10
  21. Eumkeb, G., Sakdarat, S. and Siriwong, S. 2010. Reversing ${\beta}$-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine 18, 40-45. https://doi.org/10.1016/j.phymed.2010.09.003
  22. Garo, E., Eldridge, G. R., Goering, M. G., DeLancey Pulcini, E., Hamilton, M. A., Costerton, J. W. and James, G. A. 2007. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob. Agents. Chemother. 51, 1813-1817. https://doi.org/10.1128/AAC.01037-06
  23. Grange, J. M. and Davey, R. W. 1990. Antibacterial properties of propolis (bee glue). J. R. Soc. Med. 83, 159-160. https://doi.org/10.1177/014107689008300310
  24. Harborne, J. B. and Wulliams, C. A. 2000. Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  25. Havsteen, B. H. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32, 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  26. Havsteen, B. H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X
  27. Heinonen, M. 2007. Antioxidant activity and antimicrobial effect of berry phenolics-a Finnish perspective. Mol. Nutr. Food Res. 51, 684-691. https://doi.org/10.1002/mnfr.200700006
  28. Isogai, E., Isogai, H., Takeshi, K. and Nishikawa, T. 1998. Protective effect of Japanese green tea extract on gnotobiotic mice infected with an Escherichia coli O157:H7 strain. Microbiol. Immunol. 42, 125-128. https://doi.org/10.1111/j.1348-0421.1998.tb02260.x
  29. Lee, K. M., Kim, W. S., Lim, J., Nam, S., Youn, M., Nam, S. W., Kim, Y., Kim, S. H., Park, W. and Park, S. 2009. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J. Food Prot. 72, 325-331.
  30. Lin, R. D., Chin, Y. P., Hou, W. C. and Lee, M. H. 2008. The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA). Planta. Med. 74, 840-846. https://doi.org/10.1055/s-2008-1074559
  31. Liu, X. L., Xu, Y. and Go, M. L. 2008. Fuctionalized chalcones with basic fuctionalities have antibacterial activity against drug sensitive Staphylococcus aureus. Eur. J. Med. Chem. 43, 1681-1687. https://doi.org/10.1016/j.ejmech.2007.10.007
  32. Middleton, J. E., Kandaswami, C. and Theoharides, T. C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751.
  33. Sakanaka, S. N., Shimura, M., Aizawa, M. K. and Yamamoto, T. 1992. Preventive effect of green tea polyphenols against dental caries in conventional rats. Biosci. Biotechnol. Biochem. 56, 592-594. https://doi.org/10.1271/bbb.56.592
  34. Skibola, C. F. and Smith, M. T. 2000. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med. 29, 375-383. https://doi.org/10.1016/S0891-5849(00)00304-X
  35. Stapleton, P. D., Shah, S., Hamilton-Miller, J. M. T., Hara, Y. Nagaoka, Y. and Kumagai, A. 2004. Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins. Int. J. Antimicrob. Agents 24, 374-380. https://doi.org/10.1016/j.ijantimicag.2004.03.024
  36. Stapleton, P. D., Shah, S., Ehlert, K., Hara, Y. and Taylor, P. W. 2007. The ${\beta}$-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology 153, 2093-2103. https://doi.org/10.1099/mic.0.2007/007807-0
  37. Tsuchiya, H., Sato, M., Miyazaki, T., Fujiiwara, S., Tanigki, S., Ohyama, M., Tanaka, T. and Linuma, M. 1996. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 50, 27-34. https://doi.org/10.1016/0378-8741(96)85514-0
  38. Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A. and Jaziri, M. E. 2010. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensingcontrolled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 76, 243-253. https://doi.org/10.1128/AEM.01059-09
  39. Yanagawa, Y., Yamamoto, Y., Hara, Y. and Shimamura, T. A. 2003. Combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr. Microbiol. 47, 244-249. https://doi.org/10.1007/s00284-002-3956-6
  40. Zhang, L. N., Cao, P., Tan, S. H., Gu, W., Shi, L. and Zhu, H. L. 2008. Synthesis and antimicrobial activities of 7-Omodified genistein derivates. Eur. J. Med. Chem. 43, 1543-1551. https://doi.org/10.1016/j.ejmech.2007.09.008