DOI QR코드

DOI QR Code

Analysis of Archaeal Community in Autotrophic Perchlorate-degrading Enrichment Culture

독립영양 방식으로 퍼클로레이트를 분해하는 농화배양 내 고세균 군집 분석

  • Received : 2016.11.02
  • Accepted : 2017.02.01
  • Published : 2017.04.30

Abstract

Perchlorate ($ClO_4^-$) is an emerging contaminant detected in soil, groundwater, and surface water. Previous study revealed bacterial community in the enrichment culture tdegraded perchlorate using elemental sulfur as an electron donor. Quantitative and qualitative molecular methods were employed in this study to investigate archaeal community in the enrichment culture. Real-time qPCR showed that archaeal 16S rRNA gene copy number in the culture was about 1.5% of bacterial 16S rRNA gene copy number. This suggested that less archaea were adapted to the environment of the enrichment culture and bacteria were dominant. DGGE banding pattern revealed that archaeal community profile of the enrichment culture was different from that of the activated sludge used as an inoculum for the enrichment culture. The most dominant DGGE band of the enrichment culture was affiliated with Methanococci. Further research is necessary to investigate metabolic role of the dominant archaeal population to better understand microbial community in the perchlorate-reducing enrichment culture.

퍼클로레이트($ClO_4^-$)는 토양, 지하수, 그리고 지표수의 신규 오염물질이다. 원소 황을 전자공여체로 이용하여 퍼클로레이트를 분해하는 농화배양에 존재하는 세균 군집에 대한 정보는 이전 연구를 통해 밝혀졌다. 본 연구에서는 정량 및 정성적인 분자기법으로 이 농화배양 내 고세균 군집을 조사하였다. 농화배양 내의 16S rRNA 유전자 copy수를 실시간 정량 PCR로 조사한 결과 고세균의 이 유전자 copy수는 세균의 1.5%를 나타냈다. 그래서 이 농화배양 환경에서 적응하는 고세균의 수가 적어 세균이 우점하는 것으로 나타났다. DGGE 밴드패턴을 통해 농화배양과 식종균으로 이용한 활성슬러지의 고세균 군집조성이 다르다는 것을 알 수 있었다. 농화배양의 가장 우세한 DGGE 밴드는 Methanococci와 연관되는 것으로 나타났다. 향후 이 우점 고세균 개체군의 대사적 역할이 규명되면 퍼클로레이트를 제거하는 농화배양 내 존재하는 미생물 군집을 이해하는데 도움이 될 것이다.

Keywords

References

  1. Ahn, Y. and Kim, Y. H. 2016. Analysis of microbial community in perchlorate-degrading salt-tolerant enrichment culture. J. Kor. Soc. Environ. Tech. 17, 527-535.
  2. Anupama, V. N., Prajeesh, P. V. G., Priya, S. A. P. and Krishnakumar, B. 2015. Diversity of bacteria, archaea and protozoa in a perchlorate treating bioreactor. Microbiol. Res. 177, 8-14. https://doi.org/10.1016/j.micres.2015.04.011
  3. Bardiya, N. and Bae, J. H. 2011. Dissimilatory perchlorate reduction: A review. Microbiol. Res. 166. 237-254. https://doi.org/10.1016/j.micres.2010.11.005
  4. Coates, J. D., Michaelidou, U., Bruce, R. A., O'connor, S. M., Crespi, J. N. and Achenbach, L. 1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Env. Microbiol. 65, 5234-5241.
  5. Coates, J. D. and Achenbach, L. A. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569-580. https://doi.org/10.1038/nrmicro926
  6. DeLong, E. F. 1992. Archaea in coastal marine environment. Proc. Natl. Acad. Sci. USA 89, 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  7. Demirel, B. and Scherer, P. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 7, 173-190. https://doi.org/10.1007/s11157-008-9131-1
  8. Gray, N. D., Miskin, E. P., Kornilova, O., Curtis, T. P. and Head, I. M. 2002. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants. Environ. Microbiol. 4, 158-168. https://doi.org/10.1046/j.1462-2920.2002.00280.x
  9. Han, K. R., Kang, T. H., Kang, H. C., Kim, K., Seo, D. H. and Ahn, Y. 2011. Autotrophic perchlorate-removal using elemental sulfur granules and activated sludge: batch test. J. Life Sci. 21, 1473-1480. https://doi.org/10.5352/JLS.2011.21.10.1473
  10. Han, K. R. and Ahn, Y. 2013. Characterization of perchlorate- removal using elemental sulfur granules and activated sludge. J. Life Sci. 23, 676-681. https://doi.org/10.5352/JLS.2013.23.5.676
  11. Jang, H. M., Kim, J. H., Ha, J. H. and Park, J. M. 2014. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 165, 174-182. https://doi.org/10.1016/j.biortech.2014.02.028
  12. Kim, Y. H., Han, K. R., Hwang, H., Kwon, H., Kim, Y., Kim, K., Kim, H., Son, M., Choi, Y. I. and Ahn, Y. 2016. Analysis of a sulfur-oxidizing perchlorate-degrading microbial community. J. Life Sci. 26, 68-74. https://doi.org/10.5352/JLS.2016.26.1.68
  13. Klappenbach, J. A., Saxman, P. R., Cole, J. R. and Schmidt, T. M. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29, 181-184. https://doi.org/10.1093/nar/29.1.181
  14. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  15. Liebernstiner, M. G., Pinkse, M. W., Schaap, P. J., Stams, A. J. M. and Lomans, B. P. 2013. Archaeal (per)chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340, 85-87. https://doi.org/10.1126/science.1233957
  16. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301-311. https://doi.org/10.1006/enfo.2001.0059
  17. Park, B. J., Park, S. J., Yoon, D. N., Schouten, S., Damste, J. S. S. and Rhee, S. K. 2010. Cultivation of autotrophic ammonia- oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Env. Microbiol. 76, 7575-7587. https://doi.org/10.1128/AEM.01478-10
  18. Schleper, C., Jurgens, G. and Jonuscheit, M. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3, 479-488. https://doi.org/10.1038/nrmicro1159
  19. Shcherbakova, V., Oshurkova, V. and Yoshimura, Y. 2015. The effects of perchlorates on the permafrost methanogen: implication for autotrophic life on Mars. Microorganisms 3, 518-534. https://doi.org/10.3390/microorganisms3030518
  20. Shin, K. H., Son, A., Cha, D. K. and Kim, K. W. 2007. Review on risks of perchlorate and treatment technologies. J. Kor. Soc. Environ. Eng. 29, 1060-1068.
  21. Timura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  22. Wei, M., Zhang, R., Wang, Y., Ji, H., Zheng, J., Chen, X. and Zhou, H. 2013. Microbial community structure and diversity in deep-sea hydrothermal vent sediments along the Eastern Lau Spreading Centre. Acta. Oceanologica. Sinica. 32, 42-51.