DOI QR코드

DOI QR Code

MODIS AOD를 이용한 지상 시정 산출

Estimation of surface visibility using MODIS AOD

  • 박준영 (강릉원주대학교 대기환경과학과) ;
  • 권태영 (강릉원주대학교 대기환경과학과) ;
  • 이재용 (강릉원주대학교 대기환경과학과)
  • Park, Jun-Young (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Kwon, Tae-Yong (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Jae-Yong (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2017.01.23
  • 심사 : 2017.04.15
  • 발행 : 2017.04.30

초록

이 연구에서는 위성의 AOD를 이용하여 지면 시정을 산출하는 방법을 제시했다. 시정을 산출하기 위해서는 에어로졸의 분포 고도가 필요하다. 이 연구에서는 두 가지 에어로졸의 분포 고도를 이용하여 시정을 산출하였다. 하나는 대기층이 분리되어 나타나는 경우로 물리적으로 아래와 위층이 완전히 분리되어 있는 경우를 의미한다. 이 경우 분리된 층의 상한 고도를 에어로졸 층 고도(Aerosol Layer Height: ALH)로 가정하였으며 상대습도의 연직분포에서 뚜렷한 최소값이 나타나는 고도로부터 찾았다. 다른 하나는 분리된 층이 존재하지 않은 경우를 의미한다. 이 경우 행성 경계층 고도(Planetary Boundary Layer Height: PBLH)를 사용하였다. 이 두 고도는 RDAPS 예측장 자료로부터 산출되었다. 따라서 시정은 MODIS AOD와 PBLH/ALH로부터 추정하였다. 여기서 ALH를 사용하는 경우 Koschmieder's Law를 이용하였으며 PBLH를 사용하는 경우 경험적 관계식을 이용하였다. 추정 시정을 검증하기 위해 2015~2016년 봄철에 목측 9개와 PWD22 17개 지점의 시정 자료를 사용하였다. 추정시정의 검증에서 검증 값은 지점, 년도, 오전(Terra)/오후(Aqua)에 따라 상당한 차이가 있었다. 이 중 2016년 Terra위성을 이용한 중서부 지역 지점들의 검증은 가장 좋은 결과를 보였다. 검증 결과를 요약하면 상관계수는 0.65보다 높았고, 낮은 시정에서 RMSE는 3.62 km, ME는 2.29 km 보다 낮았다. 그리고 POD는 0.65보다 높았고, FAR은 0.5보다 낮았다. 이러한 검증 결과는 낮은 시정의 데이터 수가 많을수록 좋아졌다.

Thisstudy presentsthe method for deriving surface visibility from satellite retrieved AOD. To do thisthe height of aerosol distribution isrequired. This distribution would be in thisstudy represented by the two heights; if there is a discrete atmospheric layer, which is physically separated from the above layer, the upper height of the layer is assumed as Aerosol Layer Height(ALH). In this case there is clear minimum in the Relative Humanity vertical distribution. Otherwise PBLH(Planetary Boundary Layer Height) is used. These heights are obtained from the forecast data of Regional Data Assimilation and Prediction System(RDAPS). The surface visibility is estimated from MODIS AOD and ALH/PBLH, using Koschmieder's Law for ALH and the empirical relations for PBLH. The estimated visibility are evaluated from the visibility measurements of 9 eve-measurement stations and 17 PWD22 stations for the spring of 2015 and 2016. Verification of the estimated visibility shows that there are considerable differencesin statistical verification value depending on stations, years, morning(Terra)/afternoon(Aqua). The better results are shown in the midwest part of korean peninsula for Terra of 2016. The results are summarized as; correlation coefficients of higher than 0.65, for low visibility RMSE of 3.62 km and ME of 2.29 km or less, POD of higher than 0.65 and FAR of 0.5 or less. Verification results were better with increase in the number of low-visibility data.

키워드

참고문헌

  1. Elterman, L., 1970. Relationships between vertical attenuation and surface meteorological range. Applied optics, 9(8): 1804-1810. https://doi.org/10.1364/AO.9.001804
  2. Ginoux, P., J.M. Prospero, T.E. Gill, N.C. Hsu, and M. Zhao, 2012. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3): RG3005, 1-36.
  3. Gupta, P., S.A. Christopher, J. Wang, R. Gehrig, Y.C. Lee, and N. Kumar, 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30): 5880-5892. https://doi.org/10.1016/j.atmosenv.2006.03.016
  4. He, Q., C. Li, F. Geng, G. Zhou, W. Gao, W. Yu, Z. Li, and M. Du, 2016. A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sensing of Environment, 181: 1-13. https://doi.org/10.1016/j.rse.2016.03.016
  5. Hess, M., P. Koepke, and I. Schult, 1998. Optical properties of aerosols and clouds, The software package OPAC. Bulletin of the American Meteorological Sosiety, 79(5): 831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  6. Hyeon, D.-R., J.-M. Song, K.-J. Kim, W.-H. Kim, C.-H. Kang, and H.-J. Ko, 2014. Compositions of haze aerosols and their variation by inflow pathway of air mass at Gosan site in Jeju Island during 2012-2013. Analytical Science & Technology, 27(4): 213-222 (in Korean with English abstract). https://doi.org/10.5806/AST.2014.27.4.213
  7. Hyer, E.J., J.S. Reid, and J. Zhang, 2011. An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmospheric Measurement Techniques, 4(3): 379-408. https://doi.org/10.5194/amt-4-379-2011
  8. Kaufman, Y.J., A.E. Wald, L.A. Remer, B.C. Gao, R.R. Li, and L. Flynn, 1997. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5): 1286-1298. https://doi.org/10.1109/36.628795
  9. Kessner, A.L., J. Wang, R.C. Levy, and P.R. Colarco, 2013. Remote sensing of surface visibility from space: A look at the United States East Coast. Atmospheric Envirionment, 81: 136-147. https://doi.org/10.1016/j.atmosenv.2013.08.050
  10. Koschmieder, H., 1925. Theorie der horizontalen Sichtweite. Beitrage zur Physik der Freien Atmosphare, 12(1): 33-55.
  11. Levy, R.C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420. https://doi.org/10.5194/acp-10-10399-2010
  12. Malm, W., 1979. Considerations in the measurement of visibility. Journal of the Air Pollution Control Association, 29(10): 1042-1052. https://doi.org/10.1080/00022470.1979.10470893
  13. McClatchey, R.A., R.W. Fenn, J.A. Selby, F.E. Volz, and J.S. Garing, 1972. Optical properties of the atmosphere, AIR FORCE CAMBRIDGE RESEARCH LABS HANSCOM AFB MA.
  14. Sayer, A.M., N.C. Hsu, C. Bettenhausen, and M.J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection6 "Deep Bule" aerosol data. Journal of Geophysical Research: Atmospheres, 118(14): 7864-7872. https://doi.org/10.1002/jgrd.50600
  15. Song, S.J., J.E. Kim, E.H. Lim, J.-W. Cha, and J. Kim, 2015. Physical, Chemical and Optical Properties of an Asian Dust and Haze Episodes Observed at Seoul in 2010. Journal of Korean Society for Atmospheric Environment, 31(2): 131-142 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2015.31.2.131
  16. Tsai, T.C., Y.J. Jeng, D.A. Chu, J.P. Chen, and S.C. Chang 2011. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment, 45(27): 4777-4788. https://doi.org/10.1016/j.atmosenv.2009.10.006
  17. Van Donkelaar, A., R.V. Martin, and R.J. Park, 2006. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research: Atmospheres, 111: D21201, 1-10.
  18. Van Donkelaar, A., R.V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, and P.J. Villeneuve, 2010. Global estimates of ambient fine particulate matter concentrations from satellitebased aerosol optical depth: development and application. Environmental Health Perspectives, 118(6): 847-855. https://doi.org/10.1289/ehp.0901623
  19. Wang, J. and S.A. Christopher, 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophysical research letters, 30(21): 2095 https://doi.org/10.1029/2003GL018174
  20. Wilk, D.S., 1995. Statistical Methods in the Atmospheric Sciences: An Introduction, Academic press.
  21. World Meteorological Organization, 2008. Guide to Meteorological Instruments and Methods of Observation, seventh ed. WMO-No.8, Geneva. Swizerland.
  22. Zhang, H., R.M. Hoff, and J.A. Engel-Cox, 2009. The relation between Moderate Resolution Imaging Spectroradiometer(MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by US Environmental Protection Agency regions. Journal of the Air & Waste Management Association, 59(11): 1358-1369. https://doi.org/10.3155/1047-3289.59.11.1358
  23. Zhang, Q., X. Ma, X. Tie, M. Huang, and C. Zhao, 2009. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China. Atmospheric Environment, 43(34): 5526-5535. https://doi.org/10.1016/j.atmosenv.2009.05.037