DOI QR코드

DOI QR Code

Optimal Geometric Design of Secondary Mirror Supporter in Catadioptric Optical System for Observation Reconnaissance Using Response Surface Methodology

반응 표면 분석법을 이용한 감시 정찰용 반사 굴절 광학계 부경 지지대의 형상 최적 설계

  • Lee, Sang Eun (Seeker & EO/IR R&D Lab., LIG NEX1 Co., Ltd.) ;
  • Kim, Dae Hee (Research Institute, B&C Tech Co., Ltd.) ;
  • Lee, Tae Won (Dept. of Mechanical Design Engineering, Kumoh Nat'l Institute of Technology)
  • 이상은 (LIG 넥스원 탐색기&광학연구센터) ;
  • 김대희 (비앤씨테크 기술연구소) ;
  • 이태원 (금오공과대학교 기계설계공학과)
  • Received : 2016.11.30
  • Accepted : 2017.01.05
  • Published : 2017.05.01

Abstract

A catadioptric optical system produces images by refraction and reflection. To improve the image quality, the shape of the secondary mirror supporters should be determined to ensure that the centering error and tilt of secondary mirror are very small, and the main mirror receives the maximum amount of light. Furthermore, random acceleration vibration has a severe effect on the optical system for observation reconnaissance. In order to obtain the best design under these circumstances, the volume of the secondary mirror supporter must be minimized while satisfying the constraints expressed in standard deviations of the centering error and tilt. It is difficult to analytically calculate the design sensitivities of the standard deviations, because they are statistically defined. Hence, after their second-order regression equations were determined using a response surface methodology, an optimal geometric design was obtained. As a result, it was found that the method proposed in this paper, which included a random vibration analysis, was effective in obtaining the optimal design for a secondary mirror supporter with robustness.

반사 굴절 광학계는 굴절과 반사를 이용하여 영상을 전달한다. 영상의 질을 높이려면 광학계에 있는 부경의 편심과 경사가 작게 발생되고 주경이 광량을 최대로 받도록 부경 지지대의 형상이 결정되어야 한다. 특히 감시 정찰용 광학계는 랜덤 가속도 진동을 심하게 받는다. 이러한 환경하에 최선의 설계를 하기 위하여 표준편차로 표현된 편심과 경사에 대한 제한조건을 만족하면서 부경 지지대의 부피를 최소화하여야 한다. 편심과 경사의 표준편차는 통계적인 표현이므로 이들에 대한 설계민감도를 해석학적으로 유도하기가 어렵다. 그러므로, 이 표준편차들을 반응 표면 분석법을 이용하여 2차 회귀 방정식으로 대체한 후 형상 최적 설계를 수행하였다. 검토 결과 본 논문의 방법이 랜덤 진동을 받는 강건한 부경 지지대의 형상 최적화에 효율적임을 알 수 있다.

Keywords

References

  1. MIL-STD-810G, 2008, Department of Defense Test Method Standard for Environmental Engineering Considerations and Laboratory Tests, Method 514.5 Procedure І.
  2. Segalman, D. J., Fulcher, C. W. G., Reese, G. M. and Field Jr, R. V., 2000, "An Efficient Method for Calculating R.M.S. Von Mises Stress in A Random Vibration Environment," Journal of Sound and Vibration, Vol. 230, No. 2, pp. 393-410. https://doi.org/10.1006/jsvi.1999.2606
  3. Segalman, D. J. and Reese, G. M., 2000, "Estimating the Distribution of von Mises Stress for Structures Undergoing Random Excitation," ASME J. vibro, Acoust., Vol. 122, No. 1, pp. 42-48. https://doi.org/10.1115/1.568442
  4. Bendsoe, M. P. and Kikuchi, N., 1988, "Generating Optimal Topologies in Structural Design Using Homogenization Method," Computer Method in Applied Mechanics and Engineering, Vol. 71, No. 2, pp. 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  5. Bendose, M. P., 1989, "Optimal Shape Design as a Material Distribution Problem," Structural Optimization, Vol. 1, No. 4, pp. 193-202. https://doi.org/10.1007/BF01650949
  6. Choi, K. K. and Chang, K. H., 1994, "A Study of Design Velocity Field Computation for Shape Optimal Design," Finite Element in Analysis and Design, Vol. 15, No. 4, No. 1, pp. 317-341. https://doi.org/10.1016/0168-874X(94)90025-6
  7. Koh, B. K. and Park, G. J., 1997, "Development of Finite Element Analysis Program and Simplified Formulas of Bellows and Shape Optimization," Trans. Korean Soc. Mech. Eng. A, Vol. 21, No. 8, pp. 1195- 1208. https://doi.org/10.22634/KSME-A.1997.21.8.1195
  8. Jang, G. W., Choi, Y. M. and Choi, G. J., 2008, "Discrete Thickness Optimization of an Automobile Body Using the Continuous-Variable-Based Method," Journal of Mechanical Science and Technology, Vol. 22, No. 1, pp. 41-49. https://doi.org/10.1007/s12206-007-1005-x
  9. Lee, H. A., Zeshan, A. and Park, G. J., 2010, "Preliminary Study on Nonlinear Static Response Topology Optimization using Equivalent Load," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 12, pp. 1181- 1820.
  10. Kim, Y. C., Hong, J. K. and Jang, G. W., 2011, "Lightweight Crane Design by Using Topology and Shape Optimization," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 7, pp. 821-826. https://doi.org/10.3795/KSME-A.2011.35.7.821
  11. Song, Y. U., Hur, J. Y. and Youn, S. K., 2014, "Study of the Shape Optimization in Spline FEM Considering Both NURBS Control Points and Weighs as Design Variables," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 4, pp. 363-370. https://doi.org/10.3795/KSME-A.2014.38.4.363
  12. Lee, T. W. and Jung, J. H., 2004, "The Finite Element Analysis and the Optimal Design of Linear Motor," Journal of the KSPE, Vol. 21, No. 12, pp. 67-74.
  13. Lee, T. W., 2005, "Optimal Geometric Design of Linear Motor Using Response Surface Methodology," Trans. Korean Soc. Mech. Eng. A, Vol. 29, No. 9, pp. 1262-1269. https://doi.org/10.3795/KSME-A.2005.29.9.1262
  14. Ryu, T. H. and Yoo, J. H., 2009, "Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 8, pp. 726-732. https://doi.org/10.3795/KSME-A.2009.33.8.726
  15. ANSYS, 2014, User's Manual for Revision 14.5, ANSYS Inc..
  16. Intel Visual Fortran, 2010, IMSL FORTRAN Numerical Library Ver. 6.0, Intel Corp.