References
- User's Manual for ANSI/ASHRAE/IESNA Standard 90.1-2004, Appendix G. Building Performance Rating Method, pp. G39-G47.
- Kim, H. I. and Yoon, G. Y., Effect of Occupancy and Lighting System Use Patterns on Building Energy Consumption, Journal of the Architectural Institute of Korea, Vol. 27, No. 5, pp. 229-236, 2011.
- Park, S. L., Kim, J. H., Kim, D. W., and Park, C. S., Control Strategies of Cooling Systems in a Smart Home, Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, pp. 257-260, 2011.
- Simona D'Oca, Tianzhen Hong, Occupancy schedules learning process through a data mining framework, Energy and Buildings, Volume 88, pp.395-408, 2015. https://doi.org/10.1016/j.enbuild.2014.11.065
- Xin Liang, Liang X., Hong T., and Shen G. Q., Occupancy data analytics and prediction: A case study, Building and Environment, Volume 102, pp.179-192, 2016. https://doi.org/10.1016/j.buildenv.2016.03.027
- Han, H. T., Han, C. H., and Baek, C. I., Occupancy Estimation Based on Carbon Dioxide Concentration Using Dynamic Neural Network, Korean Journal of Air-Conditioning and Refrigeration Engineering, pp. 269-272, 2012.
- Bae, W. B., Kim, Y. J., Mun, S. H., and Huh, J. H. , Prediction of Occupants based on Existing Wi-Fi Infrastructure, Journal of the Architectural Institute of Korea, Vol. 31, No. 11, pp. 211-219, 2015.
- DOE, M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4.0, Federal Energy Management Program, 2015.
- Ryu, S. Ho. and Moon, H. J., Development of an Occupancy Prediction Model Using Indoor Environmental Data Based on Machine Learning Techniques, Building and Environment, Vol. 107, pp.1-9, 2016. https://doi.org/10.1016/j.buildenv.2016.06.039
- ISO, ISO 8601 Data Elements and Interchange Formats-Information Interchange - Representation of dates and times, 2004.
- Jiawei Han, Micheline Kamber, Jian Pei, Data Mining Concept and Techniques, The Third Edition, Morgan Kaufmann, pp. 330-350, 2012.
- Kevin P. Murphy, Machine Learning A probabilistic Perspective, The MIT Press, pp.544-551, 2012.
- Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
- Breiman, Leo, Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. ISBN 978-0-412-04841-8.
- Stone, R. J., Improved Statistical Procedure for the Evaluation of Solar Radiation Estimation Models, Solar Energy, Vol. 51, No. 4, pp. 289-291, 1993. https://doi.org/10.1016/0038-092X(93)90124-7
- Zhang, R., Lam, K. P., Chiou, Y. S., and Dong, B., Information-theoretic Environment Features Selection for Occupancy Detection in Open Office Spaces, Building Simulation, 5, pp. 179-188, 2012. https://doi.org/10.1007/s12273-012-0075-6