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REGULAR VARIATION AND STABILITY OF RANDOM

MEASURES

Nam Bui Quang and Phuc Ho Dang

Abstract. The paper presents a characterization of stable random mea-
sures, giving a canonical form of their Laplace transform. Domain of
attraction of stable random measures is concerned in a theorem showing
that a random measure belongs to domain of attraction of any stable
random measures if and only if it varies regularly at infinity.

Introduction

The concept of stability of probability distributions on the real line was in-
troduced by Paul Lévy in 1937 [10]. Gnedenko and Kolmogorov issued a well-
known book [5] with a complete description of one-dimensional stable distribu-
tions. Stability of a probability distribution is strongly related to its domain

of attraction. It is shown that a probability distribution is stable if and only if
its domain of attraction is not empty. In 2000, J. L. Geluk and L. de Haan [4]
gave a nice description of one-dimensional domain of attraction proving that
a probability distribution belongs domain of attraction of any one-dimensional
stable distribution if and only if it is regularly varying.

Stable distributions arise as solutions to central limit problems and have
attracted very much attention, both in theoretical research [4, 7, 9, 15, 16, 17]
as well as in applied research [1, 11, 13]. However, most of researches limited
to investigate stable distributions on linear structures like Euclidean; Hilbert
or Banach spaces, very few of articles published with topic related to more
abstract cases of convex cone or random measures. The aim of this paper is to
study stability of random measures and their domain of attraction.

1. Preliminaries and notation

For a locally compact second countable Hausdorff topological space S, let
denote by Φ(S) the class of all functions g : S → [0;∞] which have compact
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support; by m(S) the class of all non negative Radon measures on S and by
mb(S) the subclass of m(S) containing all totally bounded measures. The
family m(S) is an abelian semigroup with respect to the addition of measures,
its neutral element 0 is the measure that is identically zero. Moreover, m(S) is
a separable metric space with the vague topology. By random measure (r.m.)
we mean a probability measure on the σ-algebra of all Borel subsets of m(S).
By Π(S) we denote the class of all r.m.’s on m(S).

The addition of measures inm(S) leads to a convolution in Π(S). Namely, let
κ : m(S)×m(S) → m(S) be the continuous mapping given by κ(x,y) = x+y,
for p, q ∈ Π(S) the convolution p ∗ q is by definition the image measure of the
Radon product measure p⊗ q under the mapping κ,

p ∗ q(B) = p⊗ q(κ−1(B))

for any Borel subsetB ofm(S). Then Π(S) with the weak convergence (denoted
by →w) is a separable metrizable abelian semigroup with neutral element δ(0),
the r.m. concentrated at the neutral element 0 of m(S).

Π(S) is endowed with continuous automorphisms T a : Π(S) → Π(S), called
scaling operations by positive real numbers a > 0, defined by

T ap(B) = p(a−1B)

for any p ∈ Π(S), where a−1B = {x ∈ m(S) : ax ∈ B} for each Borel subset
B of m(S).

The Laplace transform of a r.m. p ∈ Π(S) defined by

L(p, g) =

∫

m(S)

e−x.g
p(dx)

for every function g ∈ Φ(S), where x.g =
∫

S
g(s)x(ds). Then, by virtue of

Theorem 3.1 [8], the r.m. p is uniquely determined by its Laplace transform.
Besides,

L(p ∗ q, g) = L(p, g) · L(q, g)

for any r.m.’s p, q ∈ Π(S).
A r.m. p ∈ Π(S) is called infinitely divisible (inf.div.) if for every positive

integer n there exists r.m. pn ∈ Π(S) such that

p = p
∗n
n := pn ∗ . . . ∗

︸ ︷︷ ︸

n

pn.

Then for any inf.div. r.m. p, by virtue of Theorem 6.1 [8], we get the formula

(1.1) − logL(p, g) = a.g + Γ.(1− e−πg)

for all g ∈ Φ(S), where πg is the projection from m(S) on [0;+∞] defined by
πg(x) := x.g for every measure x ∈ m(S); a ∈ m(S); and Γ is a measure on
m(S)\{0} satisfying

(1.2) (Γπ−1
B

) · h < ∞

for all relatively compact Borel subset B of S; πB(x) = x(B) for all x ∈ m(S);
h(t) := 1 − e−t. Moreover, for any given a ∈ m(S) and measure Γ with the
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mentioned property, the formula (1.1) always exactly defines an inf.div. r.m.
p. The formula (1.1) is called spectral representation, the measure Γ is called
spectral measure of p. Then it is convenient to write p = I(a,Γ).

It is clear that if Γ is spectral measure of p with the spectral representation
(1.1), then n · Γ is spectral measure of p∗n, for every natural n, and

− logL(p∗n, g) = na · g + nΓ · (1− e−πg) .

Moreover, for every positive number r, the measure r.Γ is spectral measure of
some inf.div. r.m., which can be denoted by p

∗r, and

− logL(p∗r, g) = ra · g + rΓ · (1 − e−πg) .

2. Characterization of stable random measures

In this section we concern with the concepts of stability of r.m.’s and give a
characterization of the stability.

Definition. A r.m. µ ∈ Π(S) is called α-stable, α 6= 0, if

(2.1) µ
∗n = T n1/αµ

for every natural number n > 1.

Lemma 2.1. Suppose that µ 6= δ(0); α 6= 0; and (2.1) is true for all natural

numbers n. Then α is a positive number.

Proof. Suppose that α < 0. Then because n1/α → 0 and the scalling operation
T is continuous, T n1/αµ →w T 0µ = δ(0) as n → ∞, from (2.1) we get

µ
∗n = T n1/αµ →w δ(0)

as n → ∞, that yield µ ∗ δ(0) = δ(0). Consequently, we get µ = δ(0). �

The parameter α is called the stability exponent of µ. For convenience,
sometimes we omit the term α and say that a given r.m. µ is stable. From (2.1)
it is evident that every stable r.m. is inf.div. and has spectral representation
of the form (1.1) with some special spectral measure Γ. In the follows we will
give a representation of the stable r.m. µ.

The local compactness and the separability of S ensure the existence of an in-
creasing sequence of compact subsets {Kn} such thatKn ⊂ Kn+1; Kn+1\Kn 6=
∅ for all natural n, and S =

⋃∞
n=1 Kn. In the sequel, let the sequence {Kn} be

fixed. We define subsets of measures Mn ⊂ m(S) by

M1 = {x ∈ m(S) : x(K1) = 1} ;

Mn = {x ∈ m(S) : x(K1) = · · · = x(Kn−1) = 0,x(Kn) = 1};n = 2, 3, . . . ,

and set M =
⋃∞

n=1 Mn. Then, it is clear that

(2.2) m(S)\{0} = {cx : c ∈ (0;+∞),x ∈ M} .
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Theorem 2.2. Let µ ∈ Π(S) be a random measure and α 6= 0 be given.

Suppose that µ 6= δ(0) and µ is α-stable. Then

i) If α = 1, the Laplace transform L(µ, g) of µ satisfies

(2.3) − logL(µ, g) = a · g

for all g ∈ Φ(S), with some a ∈ m(S);
ii) If α 6= 1, then it must be 0 < α < 1 and there exists a Radon measure Λ

on M such that

(2.4) − logL(µ, g) =

∫

M

(x.g)αΛ(dx)

for all g ∈ Φ(S).
Conversely, if (2.3) or (2.4) is true, then µ is α-stable.

Proof. It is clear that µ is inf.div. and its Laplace transform has the form
(1.1) with certain a ∈ m(S) and spectral measure Γ. From (2.1), for every
k = 2, 3, . . ., we get the equalities

(2.5) ka = k1/αa ;

(2.6) kΓ = T k1/αΓ.

Let B be a Borel subset of M such that B ⊂
⋃J

n=1 Mn with some natural
number J . For every positive number r we put

(2.7) v(r,B) = Γ({tx : t ≥ r,x ∈ B}) .

Then it implies from (1.2) that the right hand side (2.7) is finite. Besides, due
to (2.6), we have

kv(r,B) = v(k−1/αr,B)

for k = 1, 2, . . ., that implies

kv(n1/α,B) = v(k−1/αn1/α,B) = v((n/k)1/α,B)

for k, n = 1, 2, . . ., and

v(n1/α,B) = (1/n)v(1,B) .

Therefore,

v((n/k)1/α,B) = (k/n)v(1,B) ,

that means

(2.8) v(q1/α,B) = q−1v(1,B)

for every positive rational number q.
From the continuity of measures and (2.7) we see that, for every fixed B, the

function v(t,B) is continuous from left. For each positive number t, let {qi}

be a sequence of rational numbers such that {q
1/α
i } is an increasing sequence

convergent to t. Then (2.8) yields

(2.9) v(t,B) = t−αv(1,B).
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It is easy to verify that the set function ν(B) = v(1,B), defined for Borel

subset B of M such that B ⊂
⋃J

n=1 Mn with some natural number J , can be
extended to a Radon measure on M. Simultaneously, since α > 0 by virtue
of Lemma 2.1, the set function ρα([t1; t2)) = t−α

1 − t−α
2 , defined for all pairs

of positive numbers t1 and t2 such that t1 < t2, can be extended to a Radon
measure on (0;∞). Therefore, it follows from (2.7) and (2.9) that

(2.10) Γ = ρα ⊗ ν ,

where ⊗ denotes the Radon product of two measures defined on (0;+∞) and
M, giving a measure on m(S)\{0} = (0;+∞)×M (see (2.2)).

Combining (1.1) and (2.10) we get

− logL(µ, g) = a.g +
∫

m(S)\{0}

(1− e−x.g)Γ(dx)

= a.g +
∫

(0;+∞)×M

(1− e−(t,u).g)ρα ⊗ ν(d(t,u))

= a.g +
∫

M

∞
∫

0

(1− e−tu.g)ρα(dt) ν(du)

= a.g +
∫

M

∞
∫

0

(1− e−tu.g)d(−t−α) ν(du) ,

that implies

(2.11) − logL(µ, g) = a · g +

∫

M

(u.g)α
∫ ∞

0

α · (1− e−t)

t1+α
dt ν(du) .

It is clear that the function (1 − e−t)/t1+α is integrable if and only if 0 <
α < 1. From the assumption of µ 6= δ(0) we see that L(µ, g) > 0 and the
right hand side of (2.11) must be a finite quantity. Therefore, ν = 0 and
− logL(µ, g) = a.g if α = 1.

In the case when α 6= 1, the equality (2.5) yields a = 0. Besides, due to
the fact that the integral in the right hand side of (2.11) is finite, by virtue of
Fubini’s Theorem, we can conclude that

(2.12) w(α) :=

∫ ∞

0

α · (1− e−t)

t1+α
dt < ∞ ,

that ensures 0 < α < 1. Then, due to (2.11) and (2.12), the condition (2.4)
holds with Λ(α) := w(α) · ν.

Conversely, let (2.4) be true. Then for every natural number n = 2, 3, . . .,
and for all g ∈ Φ(S), we get

− logL(µ∗n, g) = − log(L(µ, g))n = −n · logL(µ, g)

= n ·

∫

M

(u · g)αΛ(du) =

∫

M

n · (u · g)αΛ(du)

=

∫

M

(n1/α · u · g)αΛ(du) =

∫

M

(u · g)αΛ(d(n−1/α · u))

= − logL(T n1/αµ, g) ,
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that means µ∗n = T n1/αµ, (2.1) is satisfied and µ is α-stable.
By the same argument as the above, we can show that if (2.3) is true then

µ is 1-stable. The proof completes. �

The following corollary is resulted straight from the above theorem.

Corollary 2.3. The stability exponent α of a r.m. µ is a positive number such

that 0 < α ≤ 1.

Notice 1. The characterization of stable random measures in Theorem 2.2
is similar to those of the works by Nguyen Van Thu [12] and Davydov et al.
[3]. However, the one of Theorem 2.2 is more useful to investigate problems of
domain of attraction. In particular, it has been used to prove Theorem 3.5 and
Theorem 3.6.

From (2.3), it is clear that if µ is 1-stable then it is a trivial probability
measure concentrated at a point a ∈ m(S), that is µ = δ(a). In the follows we
will concern with α-stable r.m.’s for 0 < α < 1.

3. Domain of attraction of stable random measures

Definition. For λ,µ ∈ Π(S), we say that λ belongs to the domain of attraction

of µ (in symbols λ ∈ DA(µ)) if

(3.1) T an
λ
∗n →w µ

for some sequence of positive numbers {an}.

The next two lemmas are an immediate results of Theorem 4.2 [8].

Lemma 3.1. Let the condition (3.1) be true with µ 6= δ(0). Then an → 0 and

an/an+1 → 1 as n → ∞.

Lemma 3.2. Let {λn} be a sequence of r.m.’s, {an} be a sequence of positive

numbers such that λn →w µ and T an
λn →w λ as n → ∞, where µ 6= δ(0)

and λ 6= δ(0). Then there exists a positive number c such that an → c and

λ = T cµ.

The following proposition gives alternative definitions of stability of r.m.,
which are useful to investigate domains of attraction.

Proposition 3.3. Let µ be an arbitrary inf.div. r.m. Then the following con-

ditions are equivalent:
i) The r.m. µ is α-stable for some real number α ∈ (0; 1) ;
ii) For every natural number n there is a positive number an such that

(3.2) µ
∗n = T an

µ ;

iii) For every positive number r there is a positive number br such that

(3.3) µ
∗r = T brµ .
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Proof. The implications i)⇒ii) and iii)⇒ii) are trivial, we will prove the impli-
cations ii)⇒iii) and iii)⇒i). Suppose that (3.2) is true and a positive number
r is given. Then there exist two sequences ni and nk of natural numbers such
that ni/nk → r. From (3.2) we get

µ = T 1/ank
µ

∗nk = T ani
/ank

(T 1/ani
µ

∗ni)∗nk/ni = T ani
/ank

µ
∗nk/ni

and Lemma 3.2 implies µ = T c µ
∗1/r for some positive c. That means the

condition (3.3) holds with br = c, the implication ii)⇒iii) is proved.
Suppose that (3.3) is correct. Let r and s be two arbitrary positive number.

Then

µ = T b−1

r
µ

∗r = T b−1

s
µ

∗s.

Taking α = 1/ logr(br) and β = 1/ logs(bs), we get

µ = T r−1/αµ
∗r = T s−1/βµ

∗s.

We will show β = α, that ensures

µ = T n−1/αµ
∗n = Tm−1/αµ

∗m

saying that (2.1) is valid with an unique α for all natural numbers n, the
implication iii)⇒i) holds.

At first, for the case when s = rk, k = 1, 2, . . ., we see that

µ = T s−1/βµ
∗rk = T s−1/βT r1/αT r−1/αµ

∗rk = T s−1/β (T r1/αµ)
∗rk−1

= . . . = T s−1/βT rk/αµ = T r−k/β .rk/αµ = T
r
(−

k
β

+
k
α

)
µ .

This yields

r(−
k
β
+ k

α
) = 1 and − k

β + k
α = 0,

that means α = β.
Secondly, for s = r1/m, m = 1, 2, . . ., by symmetry we also have α = β.

Therefore, the equality α = β is correct for the case when s = rk/m, i.e., when
s = rq with an arbitrary positive rational number q.

Finally, let s = rc with c > 0. Then c = lim
n

qn for some increasing sequence

{qn} of rational numbers with 0 < qn < c for all n. We have c = qn + dn with
dn > 0 and dn → 0+ as n → ∞. In that case,

µ = T s−1/βµ
∗s = T s−1/βµ

∗rc = T s−1/βµ
∗rqn+dn

= T r−c/βT rqn/αµ
∗rdn .

When n → ∞, dn → 0, qn → c and rdn → 1. Then µ = T r(−c/β+c/α)µ, which
yields r(−c/β+c/α) = 1, that means α = β. The proof completes. �

Proposition 3.4. Let µ ∈ Π(S) be a r.m. such that µ 6= δ(0). Then µ is

α-stable, for some α ∈ (0; 1), if and only if its domain of attraction is not

empty, DA(µ) 6= ∅.
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Proof. From (2.1) it is clear that if µ is α-stable then µ belongs to its domain
of attraction, µ ∈ AD(µ), and DA(µ) 6= ∅.

Conversely, if (3.1) fulfils with some λ ∈ Π(S) then for every fixed natural
number m we have

T am.n
λ
∗m.n →w µ

as n → ∞, that yields

T am.n/an
(T an

λ
∗n)∗m →w µ .

Therefore, by virtue of Lemma 3.2, there exists a positive number c such that
am.n/an → c and

T 1/am
µ

∗m = µ

with am = 1/c, this implies (3.2). Then Proposition 3.3 ensures that µ is
α-stable for some positive α, the proof is finished. �

In the what follows we will characterize domains of attraction by using the
concept of regular variation of functions, which is given in the next definition.

Definition. A positive measurable function f is said to be regularly varying

at ∞ if there exists a real constant γ such that, for every s > 0,

lim
t→∞

f(t · s)

f(t)
= sγ .

The real number γ is called variation order.

Theorem 3.5. Let λ,µ ∈ Π(S), α ∈ (0; 1) be given. Suppose that µ is α-
stable and λ ∈ DA(µ). Then, for every function g ∈ Φ(S) and for every

positive number s, we have

lim
t→∞

− logL(λ, t · s · g)

− logL(λ, t · g)
= sα,

that means the function fg(t) = − logL(λ, t · g) is regularly varying at ∞ with

order α.

Proof. From the definition of Laplace transform, it is clear that fg(t) is an
increasing continuous function. Besides, by the assumption of λ ∈ DA(µ), (3.1)
is true for some sequence {an} of positive numbers. Then from [7, Theorem
4.2] and Theorem 2.2, we get

lim
n→∞

− logL(T an
λ
∗n, s · g)

− logL(T an
λ
∗n, g)

=
− logL(µ, s · g)

− logL(µ, g)
= sα

for all positive numbers s. Therefore,

(3.4) lim
n→∞

fg(a
−1
n .s)

fg(a
−1
n )

= lim
n→∞

− logL(λ, a−1
n · s · g)

− logL(λ, a−1
n · g)

= sα.

We affirm that

(3.5) lim
t→∞

fg(t · s)

fg(t)
= sα.
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Indeed, from Lemma 3.1 we see that an → 0 and a−1
n → ∞ when n → ∞. For

every positive number t such that t > min{a−1
1 , a−1

2 , . . .} let

n(t) = max{m : a−1
m < t}.

Then a−1
n(t) < t ≤ a−1

n(t)+1 and, since fg(t) is increasing,

(3.6)
fg(a

−1
n(t) · s)

fg(a
−1
n(t)+1)

≤
fg(t · s)

fg(t)
≤

fg(a
−1
n(t)+1 · s)

fg(a
−1
n(t))

.

Besides, because the function x 7→ x1/c is convex for every positive number
c < 1, from Jensen inequality we have

fg(c.t) = − logL(λ, c · t · g) = − log

∫

m(S)

e−x·c·t·g
λ(dx)

≥ − log(

∫

m(S)

e−x·t·g
λ(dx))c = −c · logL(λ, t · g) = c · fg(t) .

Therefore, (3.6) implies

an(t)+1

an(t)
·
fg(a

−1
n(t) · s)

fg(a
−1
n(t))

≤
fg(t · s)

fg(t)
≤

an(t)

an(t)+1
·
fg(a

−1
n(t) · s)

fg(a
−1
n(t))

,

that together with (3.4) and Lemma 3.1 yields (3.5), because n(t) → ∞ when
t → ∞. The proposition is proved. �

For every natural number k; every Borel subset B of M; and every pair of
positive numbers u, v such that u < v, let denote

Mk
[u;∞) = {t · x : x ∈ M1 ∪ · · · ∪Mk, t ∈ [u;∞)} ,

B[u;v) = {t · x : x ∈ B, t ∈ [u; v)} ,

B[u;∞) = {t · x : x ∈ B, t ∈ [u;∞)} .

To characterize domains of attraction in more details, we introduce the con-
cept of regular variation of measures in the next definition.

Definition. A Radon measure λ on m(S) is said to be regularly varying at ∞
if there exists a non-zero Radon measure G on m(S)\{0}; a Borel subset B1

of M; and a positive number c such that

0 < G(B1
[c;∞)) < ∞ ; G(∂B1

[c;∞)) = 0 ,

where ∂A denotes the boundary of the set A, and satisfying

(3.7) lim
t→∞

λ(B[t.u;t.v))

λ(B1
[t.c;∞))

= G(B[u;v))

for every pair of positive numbers u, v such that u < v, and every Borel subset
B of M such that G(∂B[u;v)) = 0.
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Because the sets of the form B[u;v) generate all Borel subsets of m(S)\{0},
it is clear that (3.7) is equivalent to the next condition,

(3.8) lim
t→∞

λ(t ·C)

λ(B1
[t·c;∞))

= G(C)

for every Borel subset C of m(S)\{0} with G(∂C) = 0. Moreover, by virtue of
Proposition 2.3 [13], we can prove that there exists a real number ρ such that,
for every positive number s,

(3.9) G(s.C) = sρ ·G(C) .

Besides, (3.8) and (3.9) yield

(3.10) G(B1
[r;∞)) < ∞

for each r > 0.

Theorem 3.6. Let λ ∈ Π(S) be given. If λ varies regularly at ∞, then λ ∈
DA(µ) for some non-trivial stable r.m. µ. Conversely, if λ ∈ DA(µ) for some

non-trivial stable r.m. µ, then λ is regularly varying at ∞.

Proof. Let (3.7) hold, then (3.9) implies G(∂B1
[t·c;∞)) = 0 for every positive t.

Therefore, (3.8) ensures that the function h(t) = λ(B1
[t·c;∞)) varies regularly

at ∞. Then, defining

an = inf{s > 0 : n · λ(B1
[s−1·c;∞)) ≥ 1}

for every large enough n, we get n·λ(B1
[a−1

n ·c;∞)
) → 1 as n → ∞, which together

with (3.8) yields

lim
n→∞

n · λ(a−1
n ·C) = G(C)

for every Borel subset C of m(S)\{0} with G(∂C) = 0. Combining this with
(3.10); Portmanteau Theorem (see Theorem 2.4 in [5] for instance); Theorem
4.2 and Theorem 6.1 in [7], we can ensure that

I(0, n · T an
λ) →w I(0,G) .

However, because of the equality I(0, n.T an
λ) = I(0,T an

λ)∗n and by virtue
of Corollary 6.4 [7], the above convergence implies

T an
λ
∗n →w I(0,G) ,

that means λ ∈ DA(µ), where µ = I(0,G) is a non-trivial stable r.m. due to
Proposition 3.2. The first part of theorem is proved.

Let now λ ∈ DA(µ) where µ is a non-trivial stable r.m., then µ is inf.div. and
by virtue of (1.1) and Theorem 2.2 we get µ = I(0,Γ) for some spectral mea-
sure Γ. Then from Proposition 3.2 there exists a sequence {an} of positive
numbers such that

(3.11) T an
λ
∗n →w I(0,Γ) .
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Besides, (1.2) and (2.10) imply 0 < Γ(Mk
[c;∞)) < ∞ for some natural number

k. Then, because m(S)} is a metric space, there exist a Borel subset B1 of M
and a positive number c such that 0 < Γ(B1

[c;∞)) < ∞ and Γ(∂B1
[c;∞)) = 0.

Moreover, (3.11) together with Corollary 6.4 [7] yields

I(0, n · T an
λ) →w I(0,Γ) .

Combining Theorem 2.4 [5] with Theorem 4.2 and Theorem 6.1 in [7], we ensure
that the above convergence implies

(3.12) n · T an
λ(C) → Γ(C)

for every Borel subset C of m(S)\{0} such that Γ(∂C) = 0.
Let {tk} be any increasing sequence of positive numbers tending to ∞ as

k → ∞. Then Lemma 3.1 ensures a−1
n → ∞ ; a−1

n /a−1
n+1 → 1 as n → ∞ ; and

for each k there is a natural number n(k) such that a−1
n(k) ≤ tk < a−1

n(k)+1. It is

clear that n(k) → ∞ when k → ∞. Moreover, for each Borel subset B of M
and each positive number r such that Γ(∂B[r;∞)) = 0, we have

B[a−1

n(k)
·r;∞) ⊃ B[tk·r;∞) ⊃ B[a−1

n(k)+1
·r;∞) ,

and therefore,

n(k)λ(B[a−1

n(k)
·r;∞)) ≥ n(k)λ(B[tk·r;∞)) ≥

n(k)

n(k) + 1
·(n(k)+1)λ(B[a−1

n(k)+1
·r;∞)) .

Hence, it follows from (3.12) that

(3.13) n(k) · λ(B[tk·r;∞)) → Γ(B[r;∞))

when k → ∞.
On the other hand, if B is a Borel subset of M such that Γ(∂B[u;v)) = 0

for a pair of positive numbers u, v such that u < v, then from (2.10) we get
Γ(∂B[r;∞)) = 0 for every positive number r. This together with (3.13) and the
fact that B[u;v) = B[u;∞)\B[v;∞) implies

lim
k→∞

n(k) · λ(tkB[u;v)) = Γ(B[u;v))

and

lim
k→∞

n(k) · λ(tkB
1
[c;∞)) = Γ(B1

[c;∞)) .

Consequently,

(3.14) lim
k→∞

λ(tk ·B[u;v))

λ(tk ·B1
[c;∞))

= lim
k→∞

n(k) · λ(tk ·B[u;v))

n(k) · λ(tk ·B1
[c;∞))

=
Γ(B[u;v))

Γ(B1
[c;∞))

.

However, because (3.14) is valid for every sequence {tk} increasingly conver-
gent to ∞, we get

lim
t→∞

λ(B[t·u;t·v))

λ(B1
[t·c;∞))

=
Γ(B[u;v))

Γ(B1
[c;∞))

.
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By setting G = Γ/Γ(B1
[c;∞)), the above equality confirms (3.7), that means λ

is regularly varying at ∞. The proof completes. �

Notice 2. Davydov et al. [2] gave results similar to Theorem 3.6 for point
processes (Theorem 4.3) and for probability measures on convex cone with
sub-invariant norm (Theorem 4.7). It is clear that point processes are special
cases of random measures, Theorem 3.6 is a generalization of [2, Theorem 4.3].
Meantime, the convex cone m(S) of non negative Radon measures concerned
in this study has no sub-invariant norm, [2, Theorem 4.7] can not be an exten-
sion of Theorem 3.6. Moreover, Theorem 3.6 represented both necessary and
sufficient condition for random measure belonging to stable random measure,
whilst [2, Theorem 4.7] gave only a sufficient one.
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