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STRONG STABILITY OF A TYPE OF JAMISON WEIGHTED

SUMS FOR END RANDOM VARIABLES

Jigao Yan

Abstract. In this paper, we consider the strong stability of a type of
Jamison weighted sums, which not only extend the corresponding result
of Jamison etc. [13] from i.i.d. case to END random variables, but also
obtain the necessary and sufficient results. As an important consequence,
we present the result of SLLN as that of i.i.d. case.

1. Introduction

Throughout this paper, we consider a sequence {Xn, n ≥ 1} of random
variables defined on a probability space (Ω,F , P ).

In the study of probability limit theorem, while the assumption of inde-
pendence is not reasonable in real practice, many people considered the cor-
responding results for all kinds of dependent random variables, such as NA,
PA, PQD, NQD, ND, etc. One of the important dependence structure is the
extended negatively dependent structure, which was introduced by Liu [14] as
the following.

Definition 1.1. Random variables Xk, k = 1, . . . , n are said to be Lower Ex-
tended Negatively Dependent (LEND) if there is some M > 0 such that, for
all real numbers xk, k = 1, . . . , n,

P

{

n
⋂

k=1

(Xk ≤ xk)

}

≤M
n
∏

k=1

P{Xk ≤ xk};(1.1)

they are said to be Upper Extended Negatively Dependent (UEND) if there
is some M > 0 such that, for all real numbers xk, k = 1, . . . , n,

P

{

n
⋂

k=1

(Xk > xk)

}

≤M
n
∏

k=1

P{Xk > xk};(1.2)
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and they are said to be Extended Negatively Dependent (END) if they are
both LEND and UEND. A sequence of infinitely many random variables
{Xk, k = 1, 2, . . .} is said to be LEND/UEND/END if for each positive
integer n, the random variables X1, X2, . . . , Xn are LEND/UEND/END,
respectively.

The END structure covers a lot of negative dependence structures and, more
interestingly, Liu [14] provided an example showing that the END structure can
even reflect certain positive dependence structures. Some applications for END
sequence have been found. See, for example, Liu [14] obtained the precise large
deviations for dependent random variables with heavy tails. Liu [15] studied
the sufficient and necessary conditions of moderate deviations for dependent
random variables with heavy tails. Chen et al. [5] considered the SLLN for
END random variables. Yan et al. [27] established the three series theorem
for END random variables. Since END random variables are much weaker
than independent random variables, NA random variables and NOD random
variables, studying the limit behavior of END sequence is received more and
more attentions.

In this paper, we will consider the strong stability of a type of Jamison
weighted sums, which extend the corresponding result of Jamison etc. [13]
from i.i.d. case to END random variables and obtain the necessary and sufficient
results. At the same time, we can give the results of SLLN as those of i.i.d. case.
The plan of the paper is as follows. The main results and some lemmas are
presented in Section 2, and in Section 3 we give the proofs of the main results.

Throughout this paper, we note that C will be positive constants whose
values are without importance, and, in addition, may change between appear-
ances. we let x+ and x− denote max{x, 0} and max{−x, 0} respectively, and
an ≍ bn means Cbn ≤ an ≤ Cbn. For every c > 0, we denote

Xk(c) = −cI(Xk ≤ −c) +XkI(|Xk| < c) + cI(Xk ≥ c);

Yk(c) = Xk −Xk(c) = (Xk + c)I(Xk ≤ −c) + (Xk − c)I(Xk ≥ c).

2. Main results and some lemmas

We first enumerate some necessary lemmas.

Lemma 2.1 (c.f. [14]). Let random variables X1, X2, . . . , Xn be END.

(1) If f1, f2, . . . , fn are all nondecreasing (or nonincreasing) functions, then
random variables f1(X1), f2(X2), . . . , fn(Xn) are END.

(2) For each n ≥ 1, there exists a constant M > 0 such that

E

(

n
∏

k=1

X+
k

)

≤M
n
∏

k=1

EX+
k .

Lemma 2.2 (c.f. [27]). Let {Xn, n ≥ 1} be a sequence of END random

variables, EXn = 0, EX2
n < ∞, n ≥ 1 and for every j ≥ 0, k ≥ 1, Tj,k =
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∑j+k
i=j+1Xi, then

E (Tj,k)
2
≤ C

j+k
∑

i=j+1

EX2
i ;(2.1)

E

(

max
1≤k≤n

(Tj,k)
2

)

≤ C(logn)2
j+n
∑

i=j+1

EX2
i .(2.2)

Lemma 2.3 ([17]). Let (Ω,F , P ) be a probability space and A1, A2, . . . be a

sequence of events. If
∑∞

n=1 P (An) <∞, then P (lim supAn) = 0. If

∞
∑

n=1

P (An) = ∞(2.3)

and

P (AkAj) ≤ CP (Ak)P (Aj)(2.4)

for all k, j ≥ L such that k 6= j and for some constants C ≥ 1 and L. Then

P (lim supAn) ≥ 1/C.(2.5)

Lemma 2.4. Let {Xn, n ≥ 1} be a sequence of END random variables, {wn,

n ≥ 1} and {Wn, n ≥ 1} two sequences of positive real numbers. If

W−1
n

n
∑

i=1

wiXi → 0, n→ ∞, a.s.(2.6)

and

sup
n
Wn−1/Wn ≤ G <∞ for some G ∈ R

+,(2.7)

then for each ǫ > 0,
∞
∑

n=1

P (|Xn| ≥ ǫw−1
n Wn) <∞.(2.8)

Proof. By (2.6) and (2.7), it is easy to see that wnXn/Wn → 0 a.s. as n→ ∞.
Then

W−1
n wnX

±
n → 0, n→ ∞, a.s.(2.9)

On the other hand, for every ǫ > 0
∞
∑

n=1

P{W−1
n wn|Xn| ≥ ǫ}

≤

∞
∑

n=1

P

{

W−1
n wnX

+
n >

1

3
ǫ

}

+

∞
∑

n=1

P

{

W−1
n wnX

−
n >

1

3
ǫ

}

=:

∞
∑

n=1

P
{

A(1)
n

}

+

∞
∑

n=1

P
{

A(2)
n

}

.(2.10)
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By Lemma 2.1, it is easy to see that
{

W−1
i wiX

±
i

}

are still to be a sequence of
END random variables. Then, by the definition of END, there exists anM > 0
such that

(2.11) P
{

A
(k)
i A

(k)
j

}

≤MP
{

A
(k)
i

}

P
{

A
(k)
j

}

, i 6= j, i, j ≥ 1, k = 1, 2.

Without loss of generality, we assume that M ≥ 1. If

∞
∑

n=1

P
{

A(k)
n

}

= ∞, k = 1, 2,

then, by Lemma 2.3, we have

P (lim supA(k)
n ) ≥ 1/M, k = 1, 2,

which contradicts (2.9). Therefore,

∞
∑

n=1

P
{

A(k)
n

}

<∞, k = 1, 2.

Thus, taking into account this with (2.10), we obtained (2.8) and the proof is
complete. �

Lemma 2.5 (Theorem 1.5.4 of [1]). A (positive, measurable) function f is

slowly varying if and only if, for every ε > 0, there exist a nondecreasing

function φ and a nonincreasing function ψ with

xεf(x) ∼ φ(x), x−εf(x) ∼ ψ(x) (x→ ∞).

In what follows, we will consider the strong stability of a type of Jamison
weighted sums for END random variables. We first introduce some notations
as following:

Let {wn} be a sequence of positive real numbers, Wn =
∑n

i=1 wi, N(n) =

#{i : w−1
i Wi ≤ n}, n = 1, 2, . . ., N(0) = 0. And let {Xn, n ≥ 1} be a sequence

of random variables, let Tn =W−1
n

∑n
i=1 wiXi, n = 1, 2, . . ..

Theorem A (Jamison et al. [13]). Let {Xn, n ≥ 1} be i.i.d. random variables

and

E|X1| <∞, EX1 = 0.(2.12)

In addition,

Wn → ∞, W−1
n wn → 0, n→ ∞,(2.13)

N(n) ≤ Cn, n = 1, 2, . . . .(2.14)

Then

Tn → 0, n→ ∞, a.s.(2.15)
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In the following, we will consider the corresponding results of END r.v.s with
the following weights:

wn = nγl(n), n ≥ 1,(2.16)

where γ ≥ −1, l(x), x ∈ R
+ be slowly varying function, and l(x), x ∈ R

+

nondecreasing for γ = −1. Obviously, for such weights, condition (2.13) and
(2.14) are fulfilled. By Proposition 1.5.7 of [1] and Potter’s Theorem, for each
n ≥ 1, we easily have

Wn ≍ n1+γ l(n), γ > −1,(2.17)

Wn ≤ Cl(n) logn, γ = −1.(2.18)

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of END random variables with

identical distribution, and the weights as in (2.16). If (2.12) satisfied, then

(2.15) holds.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of END random variables with

identical distribution satisfying (2.15), where the weights satisfy (2.13) and

N(n) ≥ Cn, n ≥ 1.(2.19)

Then

E|X1| <∞.(2.20)

Remark 2.1. In the absence of some essential methods, we could not extend
Theorem A to END case completely. Though weights in Theorem 2.1 are
regularly varying, they have a wide scope and could contain some common
form adequately. In addition, we take into account the necessity of Theorem
A for END random variables.

Corollary 2.1. Let {Xn, n ≥ 1} be a sequence of END random variables with

identical distribution. Then for the weights an = nγl(n), γ > −1,

(2.15) ⇐⇒ (2.12).

Corollary 2.2. Set γ = 0, l(x) ≡ 1 in Corollary 2.1. Then

lim
n→∞

Sn

n
= EX1, a.s.⇐⇒ E|X1| <∞.

Remark 2.2. Corollary 2.2 present the same results about the strong law of
large numbers for END random variables with identical distribution as those
of i.i.d. case. Moreover, a lot of other similar results can be obtained, we just
list another example as the following Corollary 2.3.

Corollary 2.3. Set γ = − 1
2 , l(x) = (log x)1/2 in Corollary 2.1. Then (2.12) is

equivalent with

(n logn)−
1

2

n
∑

i=1

i−
1

2 (log i)
1

2Xi → 0, n→ ∞, a.s.
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3. Proof of the main results

Proof of Theorem 2.1. By (2.12) and (2.14), we have
∞
∑

i=1

P{|Xi| ≥ w−1
i Wi} =

∞
∑

j=1

∑

j−1<w−1

i
Wi≤j

P{|X1| ≥ w−1
i Wi}

≤

∞
∑

j=1

P{|X1| > j − 1} (N(j)−N(j − 1))

≤ C

∞
∑

j=1

N(j)P{j − 1 < |X1| ≤ j}

≤ C

∞
∑

j=1

jP{j − 1 < |X1| ≤ j} ≤ CE|X1| <∞.

Thus
P{|Xi| ≥ w−1

i Wi, i.o.} = 0.

Therefore, in order to get (2.15), it needs only to prove

˜Tn ,W−1
n

n
∑

i=1

wiXi(w
−1
i Wi) → 0, n→ ∞, a.s.(3.1)

Since EX1 = 0, it suffices to show that

˜T+
n ,W−1

n

n
∑

i=1

wiX
+
i (w−1

i Wi) → EX+
1 , n→ ∞, a.s.(3.2)

˜T−
n ,W−1

n

n
∑

i=1

wiX
−
i (w−1

i Wi) → EX−
1 , n→ ∞, a.s.(3.3)

The derivations of these two results are similar, so we only present the proof
of (3.2). For arbitrary α > 1, set kn = [αn], n ≥ 1 ([·] stands for integer part
of a number). We first show that

˜T+
kn

→ EX+
1 , n→ ∞, a.s.(3.4)

By (2.17), (2.18) and Lemma 2.5, we see that w−1
i Wi is quasi-monotone non-

decreasing and tends to ∞. Thus

lim sup
n→∞

E ˜T+
kn

≤ lim
n→∞

EX+
1 (w−1

kn
Wkn

) = EX+
1 .(3.5)

On the other hand, for each n ≥ 1,

E ˜T+
kn

=W−1
kn

kn
∑

i=1

wiE
[

X+
i I(X

+
i ≤Wiw

−1
i ) +Wiw

−1
i I(Xi > Wiw

−1
i )
]

=W−1
kn

kn
∑

i=1

wiEX
+
1 I(X

+
1 ≤Wiw

−1
i ) +W−1

kn

kn
∑

i=1

WiP{X1 > Wiw
−1
i }
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≥W−1
kn

(

εn
∑

i=1

+

kn
∑

i=εn+1

)

wiEX
+
1 I(X

+
1 ≤Wiw

−1
i )

≥W−1
kn

kn
∑

i=εn+1

wiEX
+
1 I(X

+
1 ≤Wεnw

−1
εn )

= (1 −WεnW
−1
kn

)EX+
1 I(X

+
1 ≤Wεnw

−1
εn ),(3.6)

where εn =

{

[k
1/2
n ], γ > −1,

[log kn] , γ = −1.
In fact, when γ > −1, by (2.17) and Potter’s Theorem

WεnW
−1
kn

≤ Ck−(1+γ)/2
n

l(k
1/2
n )

l(kn)
→ 0, n→ ∞.(3.7)

And for γ = −1, taking into account monotonicity of l(x), x ∈ R
+, then by

(2.18) we have

WεnW
−1
kn

≤ C
log log kn
log kn

·
l(log kn)

l(kn)
→ 0, n→ ∞.(3.8)

Combine (3.7), (3.8) and (3.6) we see that

(3.9) lim inf
n→∞

E ˜T+
kn

≥ lim inf
n→∞

(1 −WεnW
−1
kn

)EX+
1 I(X

+
1 ≤Wεnw

−1
εn ) = EX+

1 .

By (3.5) and (3.9), we get

lim
n→∞

E ˜T+
kn

= EX+
1 .(3.10)

Therefore, to get (3.4), we need only prove

(3.11) T
+

kn
,W−1

kn

kn
∑

i=1

wi

(

X+
i (Wiw

−1
i )− EX+

i (Wiw
−1
i )
)

→ 0, n→ ∞, a.s.

It suffices to show that, for every ε > 0,
∞
∑

n=1

P
{∣

∣

∣T
+

kn

∣

∣

∣ ≥ ε
}

<∞.(3.12)

By Lemma 2.1, we see that {X+
i (Wiw

−1
i )} is still be a sequence of END

random variables, then by Tchebyshev inequality and Lemma 2.2 we have
∞
∑

n=1

P
{∣

∣

∣T
+

kn

∣

∣

∣ ≥ ε
}

≤ C

∞
∑

n=1

E
∣

∣

∣T
+

kn

∣

∣

∣

2

≤ C

∞
∑

n=1

W−2
kn

kn
∑

i=1

w2
iE
(

X+
i (Wiw

−1
i )
)2

= C

∞
∑

n=1

W−2
kn

kn
∑

i=1

w2
iE(X+

1 )2I(X+
1 ≤Wiw

−1
i )
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+ C

∞
∑

n=1

W−2
kn

kn
∑

i=1

W 2
i P{X

+
1 > Wiw

−1
i }

=: I1 + I2.(3.13)

Therefore, in order to get (3.12), it needs only to prove that Ii < ∞, i = 1, 2
for γ > −1 and γ = −1 respectively.

First for γ > −1. By (2.16), (2.17), (2.14) and (2.12),

I1 = C
∞
∑

i=1

w2
iE(X+

1 )2I(X+
1 ≤Wiw

−1
i )

∑

n:kn≥i

W−2
kn

≤ C

∞
∑

i=1

w2
iE(X+

1 )2I(X+
1 ≤Wiw

−1
i )W−2

i

= C

∞
∑

j=1

∑

j−1<Wiw
−1

i
≤j

w2
iW

−2
i E(X+

1 )2I(X+
1 ≤Wiw

−1
i )

≤ C

∞
∑

j=2

(j − 1)−2E(X+
1 )2I(X+

1 ≤ j)(N(j)−N(j − 1))

≤ C

∞
∑

j=1

P{X+
1 ≤ j}(N(j)−N(j − 1))

≤ C

∞
∑

j=1

N(j)P{j − 1 < X+
1 ≤ j}

≤ C
∞
∑

j=1

jP{j − 1 < X+
1 ≤ j} ≤ CEX+

1 <∞,(3.14)

and

I2 = C

∞
∑

i=1

W 2
i P{X

+
1 > Wiw

−1
i }

∑

n:kn≥i

W−2
kn

≤ C

∞
∑

i=1

P{X+
1 > Wiw

−1
i } ≤ EX+

1 <∞.(3.15)

Then, by (3.14) and (3.15) we get (3.12) for γ > −1. Similar for the case of
γ = −1. Thus, we get (3.4). Next for (3.2).

For each n ≥ 1, there exists positive number f(n) satisfied f(n) → ∞ and

kf(n)−1 =
[

αf(n)−1
]

< n ≤
[

αf(n)
]

= kf(n).(3.16)

Moreover,

W−1
n

n
∑

i=1

wiX
+
i (Wiw

−1
i ) ≤W−1

kf(n)−1

kf(n)
∑

i=1

wiX
+
i (Wiw

−1
i )
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=Wkf(n)
W−1

kf(n)−1

W−1
kf(n)

kf(n)
∑

i=1

wiX
+
i (Wiw

−1
i ).(3.17)

Case I: γ > −1. By (3.4) and O’Stolz Theorem

lim sup
n→∞

W−1
n

n
∑

i=1

wiX
+
i (Wiw

−1
i )

≤ lim sup
n→∞

Wkf(n)
W−1

kf(n)−1

EX+
1

≤ α1+γEX+
1 a.s.(3.18)

Case II: γ = −1. Similarly we can have

lim sup
n→∞

W−1
n

n
∑

i=1

wiX
+
i (Wiw

−1
i )

≤ lim sup
n→∞

logαf(n)(l(αf(n)−1))−1l(αf(n))(logαf(n)−1)−1EX+
1

= EX+
1 a.s.(3.19)

Since α may be arbitrarily close to 1, then by (3.18) and (3.19), we get that

lim sup
n→∞

W−1
n

n
∑

i=1

wiX
+
i (Wiw

−1
i ) ≤ EX+

1 a.s.

Similarly we have

lim inf
n→∞

W−1
n

n
∑

i=1

wiX
+
i (Wiw

−1
i ) ≥ EX+

1 a.s.

Thus we get (3.2), and then (3.1), which complete the proof. �

Proof of Theorem 2.2. By Lemma 2.4, we have

∞
∑

n=1

P (|Xn| ≥ ǫw−1
n Wn) <∞, ∀ ǫ > 0.

Combine this with (2.19), we get

∞ >

∞
∑

i=1

P{W−1
i wi|Xi| ≥ ǫ} =

∞
∑

j=1

∑

j−1<Wiw
−1

i
≤j

P{|X1| ≥ ǫWiw
−1
i }

≥

∞
∑

j=1

(N(j)−N(j − 1))P{|X1| > ǫj}

≥ C
∞
∑

j=1

N(j)(P{ǫ(j − 1) ≤ |X1| < ǫj})
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≥ C

∞
∑

j=1

j(P{ǫ(j − 1) ≤ |X1| < ǫj}) ≥ CE|X1|,

(2.20) obtained and the proof completed. �

The proofs of Corollary 2.1, Corollary 2.2 and Corollary 2.3 are obvious, we
omitted.
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