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INFINITELY MANY SOLUTIONS FOR A CLASS OF THE

ELLIPTIC SYSTEMS WITH EVEN FUNCTIONALS

Q-Heung Choi and Tacksun Jung

Abstract. We get a result that shows the existence of infinitely many
solutions for a class of the elliptic systems involving subcritical Sobolev
exponents nonlinear terms with even functionals on the bounded domain
with smooth boundary. We get this result by variational method and
critical point theory induced from invariant subspaces and invariant func-
tional.

1. Introduction

In this paper we investigate existence of infinitely many solutions for a class
of the elliptic systems on the bounded domain Ω of Rn with smooth boundary
∂Ω, n ≥ 3:

(1.1)











Lu = αu+ βv + 2p
p+q |u|

p−1|v|q in Ω,

Lv = βu+ γv + 2q
p+q |u|

p|v|q−1 in Ω,

u = v = 0 on ∂Ω,

where L = −∆ is the Laplace partial differential operator, α, β, γ are real
constants and p, q > 1 are real constants with 2 < p+ q < 2∗, 2∗ = 2n

n−2 .
We know that a single elliptic boundary value problem

(1.2) −∆u = up, 2 < p <
2n

n− 2
, in Ω,

u = 0 on ∂Ω

has infinitely many solutions. In this paper we improve this single elliptic
boundary value problem to the perturbation one for a class of elliptic systems.
For the other system boundary problem we recommend the book [2].
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Let λ1 < λ2 ≤ · · · ≤ λk ≤ · · · be eigenvalues of the eigenvalue problem
−∆u = λu in Ω, u = 0 on ∂Ω, and φk be the eigenfunctions corresponding to
the eigenvalues λk, k ≥ 1. Let W 1,2

0 (Ω) be a Sobolev space with norm

‖u‖2
W 1,2

0
(Ω)

=

∫

Ω

|∇u|2dx.

Let E =W 1,2
0 (Ω)×W 1,2

0 (Ω) be a Hilbert space endowed with the norm

‖(u, v)‖2E = ‖u‖2
W 1,2

0
(Ω)

+ ‖v‖2
W 1,2

0
(Ω)
.

Let A be
(

α β
β γ

)

∈M2×2(R). Let us set

Wλi
= span{φi | −∆φi = λiφi},

qλi
(α, β, γ) = det(λiI −A) = (λi − α)(λi − γ)− β2.

Let µ1
λi

and µ2
λi

be the eigenvalues of the matrix
(

λi−α −β
−β λi−γ

)

∈M2×2(R), i.e.,

µ1
λi

=
1

2
{−γ − α−

√

((−γ − α))2 − 4qλi
(α, β, γ)},

µ2
λi

=
1

2
{−γ − α+

√

(−γ − α)2 − 4qλi
(α, β, γ)}.

We are looking for weak solutions (u, v) of (1.1) in E. The weak solutions
(u, v) ∈ E satisfies

∫

Ω

[(−∆u,−∆v) · (z, w)− (αu + βv, βu+ γv) · (z, w)

−(
2p

p+ q
|u|p−1|v|q,

2q

p+ q
|u|p|v|q−1) · (z, w)]dx = 0 ∀(z, w) ∈ E.

We note that weak solutions of (1.1) correspond to critical points of the
continuous and Frechét differentiable functional I(u, v) ∈ C1(E,R),

I(u, v) =
1

2

∫

Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx−

∫

Ω

[
2

p+ q
|u|p|v|q]dx

= Qα,β,γ(u, v)−

∫

Ω

[
2

p+ q
|u|p|v|q]dx,

where Qα,β,γ(u, v) = 1
2

∫

Ω[|∇u|
2 + |∇v|2 − αu2 − 2βuv − γv2]dx. When 2 <

p+ q < 2n
n−2 , the embedding W 1,2

0 (Ω)×W 1,2
0 (Ω) →֒ Lp+q(Ω) is compact, so we

can assure that the functional I(u, v) satisfies the (P.S.) condition.
Our main result is as follows:

Theorem 1.1. Assume that α, β, γ are real constants and p, q > 1 are real

constants with 2 < p+ q < 2∗, 2∗ = 2n
n−2 , n ≥ 3,

(i) α > 0, β > 0, γ < 0, −γ > α.

(ii) qλi
(α, β, γ) = det

(

λi−α −β
−β λi−γ

)

< 0 for 1 ≤ i ≤ 2m, m ≥ 1,

and
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(iii) qλi
(α, β, γ) > 0, ∀i ≥ 2m+ 1.

Then (1.1) has infinitely many weak solutions.

For the proof of Theorem 1.1 we approach variational method and use critical
point theory on the invariant subspaces and the invariant functional. In Section
2, we introduce the eigenspaces spanned by the eigenfunctions corresponding

to the eigenvalues of the matrix
(

λi−α −β
−β λi−γ

)

∈M2×2(R) and recall the critical

point theory induced from the invariant subspaces and invariant functional.
We also prove a multiplicity theorem for existence of infinitely many weak
solutions which is a crucial role for the proof of main result. In Section 3, we
prove that the corresponding functional of (1.1) satisfies (P.S.)∗ condition and
prove Theorem 1.1.

2. Critical point theory on the invariant subspaces

Let qλi
(α, β, γ) = det(λiI −A) = (λi − α)(λi − γ)− β2 and µ1

λi
and µ2

λi
be

the eigenvalues of the matrix
(

λi−α −β
−β λi−γ

)

∈M2×2(R). We note that

if qλi
(α, β, γ) < 0, then µ1

λi
< 0 < µ2

λi
,

if − γ > α and qλi
(α, β, γ) > 0, then 0 < µ1

λi
< µ2

λi
,

if − γ < α and qλi
(α, β, γ) > 0, then µ1

λi
< µ2

λi
< 0,

if − γ = α and qλi
(α, β, γ) > 0, then µ1

λi
= µ2

λi
= 0.

Let (c1λi
, d1λi

) and (c2λi
, d2λi

) be the eigenvectors of
(

λi−α −β
−β λi−γ

)

∈ M2×2(R)

corresponding to µ1
λi

and µ2
λi
, respectively. Let us set

Dλi
= {(α, β, γ) ∈ R

3 | qλi
(α, β, γ) < 0 for 1 ≤ i ≤ 2m, m ≥ 1,

qλi
(α, β, γ) > 0, ∀i ≥ 2m+ 1},

D′
λi

= Dλi
∩ {−γ ≤ α},

D′′
λi

= Dλi
∩ {−γ > α},

Eλi
= {(cφ, dφ) ∈ E | (c, d) ∈ R

2, φ ∈ Hλi
},

E1
λi

= {(c1λi
φ, d1λi

φ) ∈ E | φ ∈ Hλi
},

E2
λi

= {(c2λi
φ, d2λi

φ) ∈ E | φ ∈ Hλi
},

H+(α, β, γ) = (⊕µ1
λi

>0E
1
λi
)⊕ (⊕µ2

λi
>0E

2
λi
),

H−(α, β, γ) = (⊕µ1
λi

<0E
1
λi
)⊕ (⊕µ2

λi
<0E

2
λi
),

H0(α, β, γ) = (⊕µ1
λi

=0E
1
λi
)⊕ (⊕µ2

λi
=0E

2
λi
).

Then H+(α, β, γ), H−(α, β, γ) and H0(α, β, γ) are the positive, negative and
null space relative to the quadratic form Qα,β,γ(u, v) in E. Because (λi −
α)(λi − γ)− b2 6= 0,

H0(α, β, γ) = {0}.
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Let us set

(2.1) Hn = ⊕1≤i≤nEλi
, dim Hn = 2n.

Then

H1 ⊂ H2 ⊂ · · · ⊂ Hn and ∪∞
n=1Hn = E.

Let us define an Z2-action T on E by

TU = −U, U = (u, v) ∈ E,

where −U = (−u,−v). Let

FixZ2
= {U ∈ E | TU = U ∀U ∈ E}.

Then E has two orthogonal subspaces E1 and E2 = E⊥
1 such that

E = E1 ⊕ E2, E1 = FixZ2

and Z
2-action has the representation

U 7→ −U ∀U = (u, v) ∈ E2.

Thus Z2 acts freely on the invariant subspace E2. We say a subset B of E an
Z2-invariant set if for all U ∈ B and TU ∈ B. A function f : E → R is called
Z
2-invariant if f(TU) = f(U). Let C(B,E) be the set of continuous functions

from B into E. If B is an invariant set, we say h ∈ C(B,E) is an equivariant
map if h(TU) = Th(U) for all U ∈ B.

Now we recall the multiplicity theorem.
Let X be a Hilbert space and Sr be the sphere centered at the origin of

radius r. Let I : X → R be a functional of the form

I(U) =
1

2
(LU)U − ψ(U),

where L : X → X is linear, continuous, symmetric and equivariant, ψ : X → R

is of class C1 and invariant and Dψ : X → X is compact. The following result
follows from [1].

Theorem 2.1. Assume that

(I1) I ∈ C1(X,R) is Z2-invariant,

(I2) there exist two closed invariant linear subspaces V , Y of X and two

regular values a < b, a > 0 with

1

2
codimY <

1

2
dim V <∞

such that

(1) V + Y is closed and of finite codimension in X ;
(2) Fix{Z2} ⊆ Y and Fix{Z2} ∩ V = {θ}, where θ = (0, 0);
(3) L(Y ) ⊆ Y ;
(4) infU∈Sr∩Y I(U) > a for some r > 0;
(5) supU∈V I(U) < b, b > a;
(6) u /∈ FixZ2

whenever DI(U) = θ and a ≤ I(U) ≤ b.
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(I3) I(U) satisfies (P.S.)c condition for all c ∈ [a, b].
Then I has at least

1

2
dimV −

1

2
codimY

distinct critical points.

Let

M = {B | B ⊂ E\{0}, B is closed and invariant},

Dm = BRm
∩
(

((⊕1≤i≤mE
1
λi
)⊕ (⊕1≤i≤mE

2
λi
)) ∩ (⊕i≥2m+1E

1
λi
)
)

.

Let Gm denote the class of mapping h ∈ C(Dm, X) which satisfy the following
properties:

i) h is equivariant.
ii) h is odd and h(u) = u ∀u ∈ (∂BRm

∩
(

((⊕1≤i≤2mE
1
λi
)⊕ (⊕1≤i≤mE

2
λi
))∩

(⊕i≥2m+1E
1
λi
)
)

∪ {(0, 0)}.
iii) Ph(u) = α(u)Pu + ψ(u), where ψ is compact and α ∈ C(Dm, [1, ᾱ]), ᾱ

depending on h.
By Theorem 2.1, we obtain the following result:

Theorem 2.2. Suppose that I ∈ C1(E,R) is even with I(0, 0) = 0, and that

(i) there exist ρ, τ > 0, and a finite dimensional linear subspace F such that

I|F⊥∩Sρ
≥ τ ,

(ii) there exists a sequence of linear subspaces Hm, dimHm = 2m and Rm >
0 such that

I(U) ≤ 0 ∀U ∈ Hm\BRm
, m = 1, 2, . . . .

(iii) I(U) satisfies (P.S.)∗ condition with respect to {Hn}. Then I possesses

infinitely many distinct critical points corresponding to positive critical values

ci = inf
h∈Γ

sup
U∈Vi

I(h(U))

for each i, 1 ≤ i ≤ m− j ≤ dim(V \F )− codim(V + F⊥), m→ ∞, where

Γ = {h(BRm
∩ V \Y ) | m ≥ j, h ∈ Gm, odd and Y ∈M, dimY ≤ j},

and where Vi ⊂ BRm
∩ (V \Y ) a fixed subspace of dimension

dim(Vi\F ) = i.

Proof. By contradiction, we suppose that I has at least l critical points. Let
F = ((⊕1≤i≤2mE

1
λi
) ⊕ (⊕1≤i≤jE

2
λi
)) ∩ (⊕i≥2m+1E

1
λi
) and choose m − j >

l. We note that I ∈ C1(E,R), FixZ2
= {(0, 0)} and by (iii), I(U) satisfies

(P.S.)∗ condition with respect to {Hm}. Let us set V = ((⊕1≤i≤2mE
1
λi
) ⊕

(⊕1≤i≤mE
2
λi
)) ∩ (⊕i≥2m+1E

1
λi
), Y = F⊥, a = τ and b = maxU∈V I(U) + 1.

Then by Theorem 2.1, I has at least m − j distinct critical points, which is a
contradiction. �
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3. Proof of Theorem 1.1

We note that weak solutions of (1.1) coincide with critical points of the
functional I(u, v) ∈ C1,1(E,R),

I(u, v) =
1

2

∫

Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx−
2

p+ q

∫

Ω

|u|p|v|qdx

= Qα,β,γ −
2

p+ q

∫

Ω

|u|p|v|qdx,(3.1)

where Qα,β,γ = 1
2

∫

Ω
[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx.

Let us define

(3.2) Cp,q(Ω) = inf
(u,v)∈E\(0,0)

∫

Ω
(|∇u|2 + |∇v|2)dx

(
∫

Ω
|u|p|v|qdx)

2
p+q

for (u, v) ∈ E.

Lemma 3.1. Assume that α, β, γ are real constants and p, q > 1 are real

constants, 2 < p+ q < 2∗, 2∗ = 2n
n−2 ,

(i) α > 0, β > 0, γ < 0, −γ > α.

(ii) qλi
(α, β, γ) = det

(

λi−α −β
−β λi−γ

)

< 0 for 1 ≤ i ≤ 2m, m ≥ 1,

and

(iii) qλi
(α, β, γ) > 0, ∀i ≥ 2m+ 1.

Let i ∈ N and (α0, β0, γ0) ∈ ∂D′
λi
. Then there exist a neighborhood W of

(α0, β0, γ0) and two closed invariant subspaces V and Y of E such that for any

(α, β, γ) ∈W\D′
λi
,

(1) V + Y is closed and of finite codimension in E;
(2) Fix{Z2} ⊆ V and Fix{Z2} ∩ Y = {θ}, where θ = (0, 0);

(3) L(u, v) = −∆(u, v) − A · (u, v), where A =
(

α β
β γ

)

∈ M2×2(R). Then

L(Y ) ⊆ Y ;
(4) there exist a small number r > 0, a > 0 and b > a such that

inf
(u,v)∈Sr∩Y

I(u, v) > a, sup
(u,v)∈V

I(u, v) < b for some b > a

and

inf
(u,v)∈Br∩Y

I(u, v) > −∞.

Proof. (1) Let us set

V = ((⊕1≤j≤2mE
1
λj)⊕ (⊕1≤j≤2mE

2
λj) ∩ (⊕j≥2m+1E

1
λj)),

Y = H+(α, β, γ) = ((⊕1≤j≤2mE
2
λj)⊕ (⊕j≥2m+1E

1
λj)⊕ (⊕j≥2m+1E

2
λj)).

Then

E = V + Y, V ∩ Y,

dim(V ∩ Y ) ≥ 2m, codim(V + Y ) = 0, 2m ≤ codimY < dim V <∞.

(2) Since FixZ2
= {θ}, Fix{Z2} ⊆ Y and Fix{Z2} ∩ V = {θ}.
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(3) Let (u, v) ∈ Y = H+(α, β, γ) = ((⊕1≤j≤2mE
2
λj) ⊕ (⊕j≥2m+1E

1
λj) ⊕

(⊕j≥2m+1E
2
λj)). Then (u, v) can be expressed by

(u, v) ∈ span{(c1φj , d
1φj) | j ≥ 2m+ 1} ⊕ span{(c2φj , d

2φj) | 1 ≤ j ≤ 2m}

⊕ span{(c2φj , d
2φj) | j ≥ 2m+ 1}.

Then we have

L(u, v) = (−∆−A) · (u, v)

∈ (span{µ1
λj
(c1φj , d

1φj)| j ≥ 2m+ 1}

⊕ span{µ2
λj
(c2φj , d

2φj)| 1 ≤ j ≤ 2m}

⊕ span{µ2
λj
(c2φj , d

2φj)| j ≥ 2m+ 1}) ∩X ⊂ H+(α, β, γ) = Y,

so (3) is proved.
(4) Let

(u, v) ∈ Y = H+(α, β, γ) = ((⊕1≤j≤2mE
2
λj)⊕(⊕j≥2m+1E

1
λj)⊕(⊕j≥2m+1E

2
λj)).

Then we have

I(u, v) =
1

2

∫

Ω

(−∆−A)(u, v) · (u, v)dx−
2

p+ q

∫

Ω

|u|p|v|qdx

≥
1

2
min{

µ2
λ1

λ1
,
µ1
λ2m+1

λ2m+1
)‖(u, v)‖2E −

2

p+ q
C

− 2
p+q

p,q ‖(u, v)‖p+q
E .

Since min{
µ2
λ1

λ1
,
µ1
λ2m+1

λ2m+1
} > 0 and p+ q > 2, there exists a small number r > 0

such that if (u, v) ∈ Y , then inf(u,v)∈Sr∩Y I(u, v) > a for a > 0. Moreover if

(u, v) ∈ Br ∩ Y , then I(u, v) ≥ − 2
p+qC

− 2
p+q

p,q ‖(u, v)‖p+q
E > −∞. Let (u, v) ∈

V = ((⊕1≤j≤2mE
1
λj
)⊕ (⊕1≤j≤2mE

2
λj
)⊕ (⊕j≥2m+1E

1
λj
)). Then we have

I(u, v) =
1

2

∫

Ω

(−∆−A)(u, v) · (u, v)dx−
2

p+ q

∫

Ω

|u|p|v|qdx

≤
1

2
max{

µ2
λ2m

λ2m
,
µ1
λ2m+1

λ2m+1
}‖(u, v)‖2E −

2

p+ q

∫

Ω

|u|p|v|q

≤
1

2
max{

µ2
λ2m

λ2m
,
µ1
λ2m+1

λ2m+1
}‖(u, v)‖2E = b <∞

for b > a > 0. Thus the lemma is proved. �

Lemma 3.2. Assume that α, β, γ are real constants, p, q > 1 are real constants

with 2 < p + q < 2∗ and the conditions (i), (ii), (iii) of Theorem 1.1 hold.

Let i ∈ N and (α0, β0, γ0) ∈ ∂D′
λi
. Then there exists a neighborhood W of

(α0, β0, γ0) such that for any (α, β, γ) ∈ W\D′
λi
. If (u, v) is a critical point of

I(u, v), i.e., DI(u, v) = θ and (u, v) ∈ Fix{Z2}, then I(u, v) = 0.

Proof. We note that Fix{Z2} = {θ}. Thus we have that if (u, v) ∈ Fix{Z2} =
{θ}, then I(u, v) = 0. �
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Lemma 3.3. Assume that α, β, γ are real constants, p, q > 1 are real constants

with 2 < p+ q < 2∗ and the conditions (i), (ii), (iii) of Theorem 1.1 hold. Then

if ‖(un, vn)‖E → ∞ and (un, vn)n is a sequence such that
∫

Ω
[( 2p

p+q |un|
p−1|vn|

q, 2q
p+q |un|

p|vn|
q−1) · (un, vn)−

4
p+q |un|

p|vn|
q]dx

‖(un, vn)‖E
−→ 0,

then there exist (uhn
, vhn

)n and (z, w) ∈ E such that

(
2p

p+ q
|uhn

|p−1|vhn
|q,

2q

p+ q
|uhn

|p|vhn
|q−1) → (z, w) ∈ E,

(uhn
, vhn

)

‖(uhn
, vhn

)‖E
→ (0, 0).

Proof. We note that
∫

Ω

[
2p

p+ q
|un|

p−1|vn|
qun +

2q

p+ q
|un|

p|vn|
q−1)vn]dx−

4

p+ q

∫

Ω

|un|
p|vn|

qdx

≤

∫

Ω

[
2p

p+ q
|un|

p|vn|
q +

2q

p+ q
|un|

p|vn|
q)]dx−

4

p+ q

∫

Ω

|un|
p|vn|

qdx

≤ (
2p

p+ q
+

2q

p+ q
−

4

p+ q
)

∫

Ω

|un|
p|vn|

qdx

≤ C
− 2

p+q
p,q (Ω)(

2p

p+ q
+

2q

p+ q
−

4

p+ q
)‖(un, vn)‖

p+q
E , 2 < p+ q < 2∗.

It follows that

‖

∫

Ω[
2p
p+q |un|

p−1|vn|
qun + 2q

p+q |un|
p|vn|

q−1)vn]dx

‖(un, vn)‖E
‖Lr

≤ C
− 2

p+q
p,q (Ω)(

2p

p+ q
+

2q

p+ q
)‖‖(un, vn)‖

p+q−1
E ‖Lr

≤ C(
‖(un, vn)‖

p+q
E

‖(un, vn)‖E
)

p+q−1

p+q ‖(un, vn)‖
l,

where l = −1 + p+q−1
p+q < 0. When 2 < p + q < 2n

n−2 , the embedding

W 1,2
0 (Ω, R2) →֒ Lp+q(Ω) is compact. Thus there exist (uhn

, vhn
)n in E such

that
∫

Ω
[ 2p
p+q |uhn

|p−1|vhn
|quhn

+ 2q
p+q |uhn

|p|vhn
|q−1)vhn

]dx

‖(uhn
, vhn

)‖E
(3.3)

=

∫

Ω

(
2p

p+ q
|uhn

|p−1|vhn
|q,

2q

p+ q
|uhn

|p|vhn
|q−1) ·

(uhn
, vhn

)

‖(uhn
, vhn

)‖E
dx −→ 0.

It follows that there exists (z, w) ∈ E such that

(
2p

p+ q
|uhn

|p−1|vhn
|q,

2q

p+ q
|uhn

|p|vhn
|q−1) → (z, w) ∈ E,
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(uhn
, vhn

)

‖(uhn
, vhn

)‖E
→ (0, 0).

�

Lemma 3.4 ((P.S.) condition). Assume that α, β, γ are real constants, p,
q > 1 are real constants with 2 < p+ q < 2∗ and the conditions (i), (ii), (iii) of
Theorem 1.1 hold. Let i ∈ N and (α0, β0, γ0) ∈ ∂D′

λi
. Then there exists a neigh-

borhood W of (α0, β0, γ0) such that for any (α, β, γ) ∈W\∪i∈N, (α0,β0,γ0)∈∂D′

λi

D′
λi
, the functional I(u, v) satisfies (P.S.)c condition for any c ∈ [a, b].

Proof. Let i ∈ N , (α0, β0, γ0) ∈ ∂D′
λi

and W be a neighborhood of (α0, β0, γ0).
Let (α, β, γ) ∈ W\ ∪i∈N, (α0,β0,γ0)∈∂D′

λi

D′
λi
. Let c ∈ R and (un, vn)n ⊂ E

be a sequence such that I(un, vn) → c and DI(un, vn) → θ, θ = (0, 0).
We claim that (un, vn)n is bounded in E. By contradiction we suppose that

‖(un, vn)‖E → ∞ and set (ûn, v̂n) = (un,vn)
‖(un,vn)‖E

. Since (ûn, v̂n)n is bounded,

up to a subsequence, (ûn, v̂n)n converges weakly to some (û, v̂) in E. Let
(α, β, γ) ∈W\ ∪i∈N, (α0,β0,γ0)∈∂D′

λi

D′
λi
. Since DI(un, vn) → 0, we have

(3.4)

〈(−∆−A) · (ûn, v̂n), (ûn, v̂n)〉

− 〈

2p
p+q |un|

p−1|vn|
qun + 2q

p+q |un|
p|vn|

q−1)vn

‖(un, vn)‖E
, (ûn, v̂n)〉 −→ 0.

Since DI(un, vn) → 0 and I(un, vn) → c, we also have

DI(un,vn)·(un,vn)
‖(un,vn)‖

= 2I(un,vn)
‖(un,vn)‖E

−
∫
Ω
( 2p
p+q

|un|
p−1|vn|

qun+
2q

p+q
|un|

p|vn|
q−1vn−

4
p+q

|un|
p|vn|

q)dx

‖(un,vn)‖E
−→ 0.

Thus we have

(3.5)

∫

Ω
( 2p
p+q |un|

p−1|vn|
qun + 2q

p+q |un|
p|vn|

q−1vn − 4
p+q |un|

p|vn|
q)dx

‖(un, vn)‖E
−→ 0.

By Lemma 3.1, (3.3) and (3.5), there exists a sequence (uhn
, vhn

)n such that
∫

Ω
[ 2p
p+q |uhn

|p−1|vhn
|quhn

+ 2q
p+q |uhn

|p|vhn
|q−1)vhn

]dx

‖(uhn
, vhn

)‖E
−→ 0

and
(uhn

, vhn
)

‖(uhn
, vhn

)‖E
→ (0, 0).

Thus we have (û, v̂) = (0, 0), which is absurd because ‖(û, v̂)‖E = 1. Thus
(un, vn)n is bounded. Thus (un, vn)n has a subsequence converging weakly
to some (u, v) in E. Let P− : E → H−(α, β, γ) = ⊕µ1

λi
<0, 1≤i≤2mE

1
λi

and

P+ : E → H+(α, β, γ) = ((⊕µ2
λi

>0,1 ≤i≤2mE
2
λi
)⊕ (⊕µ1

λi
>0, i≥2m+1E

1
λi
)) denote
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the orthogonal projections. We claim that the subsequence of (un, vn) converges
to (u, v) ∈ E strongly. Since DI(un, vn) → (0, 0), we have

〈DI(un, vn), (un, vn)〉

=

∫

Ω

[(−∆un)un + (−∆vn)vn − αu2n − βvnvn − βunvn − γv2n]dx

−

∫

Ω

(
2p

p+ q
|un|

p−1|vn|
qun +

2q

p+ q
|un|

p|vn|
q−1vn)dx −→ 0.

Since (un, vn) has a subsequence converging to (u, v) weakly and the embed-

ding W 1,2
0 (Ω,R2) →֒ Lp+q(Ω) for 2 < p + q < 2n

n−2 is compact, the sequence

(
∫

Ω
( 2p
p+q |un|

p−1|vn|
qun+

2q
p+q |un|

p|vn|
q−1vn)dx)n has a subsequence converging

to
∫

Ω
( 2p
p+q |u|

p−1|v|qu+ 2q
p+q |u|

p|v|q−1v)dx. Since

lim
n→∞

∫

Ω

(−∆−A)(un, vn) · (un, vn)dx

= lim
n→∞

(‖P+(un, vn)‖
2
E − ‖P−(un, vn)‖

2
E)

= lim
n→∞

∫

Ω

(
2p

p+ q
|un|

p−1|vn|
qun +

2q

p+ q
|un|

p|vn|
q−1vn)dx,

(
∫

Ω(−∆−A)(un, vn) · (un, vn)dx)n has a subsequence converging to
∫

Ω(−∆−
A)(u, v) · (u, v)dx. Since (un, vn)n is bounded, (−∆ − A)(un, vn) has a subse-
quence converging weakly to (−∆ − A)(u, v). Since (−∆ − A)−1 is compact,
(un, vn) has a subsequence converging strongly to (u, v). Thus the lemma is
proved. �

Let us set

Hm = ⊕1≤i≤nEλi
, dim Hm = 2m.

Then

H1 ⊂ H2 ⊂ · · · ⊂ Hm and ∪∞
m=1Hm = E.

Lemma 3.5 ((P.S.)∗ condition). Assume that α, β, γ are real constants,

p, q > 1 are real constants with 2 < p + q < 2∗ and the conditions (i),
(ii), (iii) of Theorem 1.1 hold. Let i ∈ N and (α0, β0, γ0) ∈ ∂D′

λi
. Then

there exists a neighborhood W of (α0, β0, γ0) such that for any (α, β, γ) ∈
W\ ∪i∈N, (α0,β0,γ0)∈∂D′

λi

D′
λi
, the functional I(u, v) satisfies (P.S.)∗ condition

with respect to {Hm}.

Proof. Let us set

I(u, v) =
1

2

∫

Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx−
2

p+ q

∫

Ω

|u|p|v|qdx

= Qα,β,γ −Ψ(u, v),

where Qα,β,γ = 1
2

∫

Ω
[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx and Ψ(u, v) =

2
p+q

∫

Ω
|u|p|v|qdx. For fixed m, choose any sequence {(Um)i} ⊂ Hm, m =
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1, 2, . . ., U = (u, v). Let Lm = L|Hm
, Im = I|Hm

, Qm
α,β,γ = Qα,β,γ|Hm

and

Ψm(u, v) = Ψ(u, v)|Hm
. For {(Um)∞1 } ⊂ Hm, U = (u, v), m = 1, 2, . . . such

that DIm(Um) → (0, 0) and Im(Um) is bounded, we shall find a convergent
subsequence. Let P+ : E → H+(α, β, γ) be an orthogonal projection from E
onto H+(α, β, γ) and P− : E → H−(α, β, γ) be one from E onto H−(α, β, γ)
respectively. From DIm(Um) → (0, 0), it follows that ∀ǫ > 0, there exists
N = N(ǫ) such that for m > N

〈DIm(Um, P±Um)〉

= 〈(Lm −A)Um, P±Um〉 − 〈(
2p

p+ q
|um|p−1|vm|q,

2q

p+ q
|um|p|vm|q−1), P±Um〉

≤ ǫ‖P±Um‖E .

By the same process of the proof of Lemma 3.4, ‖P±Um‖E is bounded, and
then 〈(Lm − A)Um, P±Um〉 are bounded. If Im(Um) is bounded, then by the
same process of the proof of Lemma 3.4, the sequence

〈(
2p

p+ q
|um|p−1|vm|q,

2q

p+ q
|um|p|vm|q−1), P±Um〉

has a convergent subsequence. Thus there exists a subsequence (Umi
) such

that 〈( 2p
p+q |um|p−1|vm|q, 2q

p+q |um|p|vm|q−1), P±Um〉 is convergent. By

DIm(Umi
) = P+(L

m −A)P+Umi
+ P−(L

m −A)P−Umi

− (
2p

p+ q
|umi

|p−1|vmi
|q,

2q

p+ q
|umi

|p|vmi
|q−1) −→ (0, 0)

and by the compactness of (P±(L
m−A))−1, P±Umi

is convergent. Thus (P.S.)∗

condition holds. �

Proof of Theorem 1.1. We note that I is C1(E,R) and even functional with
I(0, 0) = 0, so I is Z2-invariant functional. In fact,

I(−u,−v) =
1

2

∫

Ω

[|∇(−u)|2 + |∇(−v)|2 − α(−u)2 − 2β(−u)(−v)− γ(−v)2]dx

−
2

p+ q

∫

Ω

| − u|p| − v|qdx

=
1

2

∫

Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx−
2

p+ q

∫

Ω

|u|p|v|qdx

= I(u, v),

so I is even functional. Let us set

F = ⊕1≤i≤2mE
1
λi
.

Then F⊥ = H+(α, β, γ) = Y . By Lemma 3.1, there exist r > 0 and a > 0 such
that

inf
(u,v)∈F⊥∩Sr

I(u, v) = inf
(u,v)∈Y ∩Sr

I(u, v) > a,
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so the condition (i) of Theorem 2.2 is satisfied. Let us set

Hm = ⊕1≤i≤nEλi
, dim Hm = 2m.

Then

H1 ⊂ H2 ⊂ · · · ⊂ Hm and ∪∞
m=1Hm = E.

Let (u, v) ∈ Hm. Then we have

I(u, v) =
1

2

∫

Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx−
2

p+ q

∫

Ω

|u|p|v|qdx

=
1

2
(‖P+(u, v)‖

2
E − ‖P−(u, v)‖

2
E)−

2

p+ q

∫

Ω

|u|p|v|qdx

≤
1

2
‖(u, v)‖2E −

2

p+ q

∫

Ω

|u|p|v|qdx.

Since p + q > 2, there exists Rm > 0 such that ‖(u, v)‖E > Rm, |u| > Rm,
|v| > Rm and if (u, v) ∈ Hm\BRm

, then

I(u, v) ≤
1

2
R2

m −
1

2
Rp+q

m |Ω| < 0,

so the condition (ii) of Theorem 2.2 is satisfied. By Lemma 3.5, I(u, v) satisfies
(P.S.)∗ condition with respect to {Hm}, so (iii) of Theorem 2.2 is satisfied.
Thus by Theorem 2.2, I has infinitely many distinct critical points correspond-
ing to positive critical values

ci = inf
h∈Γ

sup
U∈Vi

I(h(U))

for each i, 1 ≤ i ≤ m− j ≤ V \F − codim(V + F⊥), m→ ∞, where

Γ = {h(BRm
∩ V \Y ) | m ≥ j, h ∈ Gm, odd and Y ∈M, dimY ≤ j},

and where Vi ⊂ BRm
∩ (V \Y ) a fixed subspace of dimension

dim(Vi\F ) = i.
�
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