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PRESENTATIONS AND REPRESENTATIONS
OF SURFACE SINGULAR BRAID MONOIDS

MICHAL JABLONOWSKI

Dedicated to Matgorzata

ABSTRACT. The surface singular braid monoid corresponds to marked
graph diagrams of knotted surfaces in braid form. In a quest to resolve
linearity problem for this monoid, we will show that if it is defined on
at least two or at least three strands, then its two or respectively three
dimensional representations are not faithful. We will also derive new
presentations for the surface singular braid monoid, one with reduced the
number of defining relations, and the other with reduced the number of
its singular generators. We include surface singular braid formulations of
all knotted surfaces in Yoshikawa’s table.

1. Introduction

The well known Artin representation of the braid group B, may be used
to calculate the group of a knot. Applying Fox’ free differential calculus to
this representation, we can derive the Burau representation. Its irreducible
part may be used to calculate the Alexander polynomial of a knot. In [2], B.
Gemein extend the Artin and the Burau representation to a representation of
the Baez-Birman singular braid monoid SB,,. A monoid is said to be linear if
it is isomorphic to a submonoid of matrices M, (K) for some natural number n
and some field K. In [1], O. T. Dasbach and B. Gemein showed the faithfulness
of the two dimensional extended Burau representation of SBs, therefore this
monoid is linear.

It is natural then to search for a faithful representation of the surface singular
braid monoid SSB,, defined in [3], where the author classified knotted surfaces
in R* that have surface singular braid index equal to one or two, and also showed
that there exist infinitely many surface-link types that are closures of elements
from SSBs. We will show in this paper that any representation of SSB,,, for
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any n > 3, to the multiplicative monoid of all 2 X 2 or 3 x 3 matrices with
entries in a given field, is not faithful. We will also derive new presentations
for the surface singular braid monoid, one with reduced the number of defining
relations, and the other with reduced the number of its defining non-classical
generators.

2. Marked graph diagrams

An embedding (or its image) of a closed (i.e., compact, without bound-
ary) surface into R* is called a knotted surface (or surface-link). Two knotted
surfaces are equivalent (or have the same type) if there exists an orientation
preserving homeomorphism of the four-space R* to itself (or equivalently auto-
homeomorphism of the four-sphere S*), mapping one of those surfaces onto the
other. We will work in the standard smooth category. Let R} denote R? x {t}
for t € R.

It is well known ([4, 5, 8]) that for any knotted surface F, there exists a
surface-link F’ satisfying the following: F’ is equivalent to F and has only
finitely many Morse’s critical points, all maximal points of F’ lie in R$, all
minimal points of F’ lie in R? ;, all saddle points of F” lie in R3.

The zero section RGN F’ of the surface F’ gives us then a 4-valent graph. We
assign to each vertex a marker that informs us about one of the two possible
types of saddle points (see Fig. 1) depending on the shape of R3 .NF’ or R3NF’
for a small real number € > 0. The resulting graph is called a marked graph.

Making now a projection in general position of this graph to R? and assigning
types of classical crossings between regular arcs, we obtain a marked graph
diagram. For a marked graph diagram D, we denote by L4 (D) and L_(D) the
diagrams obtained from D by smoothing every vertex as presented in Fig. 1 for

+e and —e, respectively.
—€ 0 +€

F1GURE 1. Rules for smoothing a marker.

Theorem 1 ([6,7,9]). Any two marked graph diagrams representing the same
type of knotted surface are related by a finite sequence of Yoshikawa local moves
presented in Fig. 2 (and an isotopy of the diagram in R?).

3. Surface singular braid monoid

We can present every marked diagram of a surface-link in a braid form
defined as the geometric closure of a singular braid with markers. We have the
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FIGURE 2. A generating set of Yoshikawa moves (compare [10]).

monoid SSB,, that corresponds to marked graph diagrams in braid form on m
strands. For m = 1 this monoid is trivial with one element, let us assume that
m > 1. Elements of SSB,,, called surface singular braids, are generated by four
types of elements a;, b;, ¢;, ci_1 for i =1,...,m — 1, where the correspondence
of types of crossings and types of markers between i-th and ¢ 4+ 1-th strand (in
the horizontal position, numbered from the top to the bottom) is presented in

Fig. 3.
i
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FI1GURE 3. The correspondence of monoid generators.

Definition 2 ([3]). Let m € Z, m > 1 and i, k,n € {1,...,m — 1} such that
|k —i| = 1, moreover let x;,y; € {ai,bi,ci,ci_l}. Monoid SSB,, is subject to
the following relations.
(A1) cic;t =1,
) Tiln = Ynx; for n £k,
) TiCkC; = CkCiTk,
) xicglci_l = c,;lci_lxk,
) aibr = bras,
) aibi—a(ci—1¢i—2¢ici—1)* = azb;—o for i > 2,
) bia;—a(ci—1¢i—acici—1)* = bja;—o for i > 2,
)
)
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(AlO) aibicf == aibi,
(A11) a;bp(cicre;)? = a;by.

We will indicate our closure of a marked graph diagram in a braid form by
adding square brackets around its words and adding lower index after it, saying
how many strands we are joining. Let us further denote by C'SB,, a subset of
SSB,, containing only those elements x such that L ([x],,) and L_([z],,) are
diagrams of trivial classical links. We define the following additional relations
on closed braids.

(C1) [z:5,],, = [Snwi], for n € Z; and i < n and x;S, € CSB,,

(C2) [Sul, = [Sn®n], 4 for n € Zy and S, € CSB,.

Theorem 3 ([3]). Making change in a closed braid word formulation of a
knotted surface by using one of relations from (A1)-(All) or (C1)-(C2), we
receive a formula of a knotted surface of the same type.

Proposition 4. The monoid SSB,, for m € Z and m > 1 is generated by
ai,bi,ci,ci_l fori,je{l,....,m—1}, z;,y; € {ai,bi,ci,ci_l} and 1is subject to
the following relations:

(R1) et =1=c e,

(R2) TilY; = YjTi for |i—jl>1,
(R3) a;c; = c;a;,

(R4) bic; = c;b;,

(R5) Cit1CiCit1 = CiCit1Cg fori<m—1,
(R6) Ai11CiCiq1 = CiCiy104 fori<m—1,
(R7) bit1cicit1 = ciCit1b; Jori<m—1,
(R8) (iCi11C; = Ciy1CiQiq1 fori<m—1,
(R9) biciy1ci = ciy1cibiqn fori<m—1,
(R10) aibir1 = bit1a; fori<m—1,
(R11) a;b; = b;a;,

(R12) a? = aj,

(R13) b} = by,

(R14) aibic? = a;b;,

(R15) aibip1(cicip16)* = abiqr fori<m—1,
(R16) aibita(Cip1¢iciyacivr)? = aibipo fori<m —2.

Proof. Some relations from (A2)-(A4) that includes ¢; * are known, from clas-
sical singular braid theory, to follow from (R1)-(R9). The remaining relations
are either the same or derived as follows.
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(R1) —~1 —1 (R6) —1 —1 (R1),(R3),(R4)
(1) biaHl = biai+1cici+1ci+1ci = biCiCi+1aiCi+1Ci =

1 -1 —1 (R9) —1 —1 —1 (R10)
cibicipicia;c; Cif1C = CiCit1Cibiy1a;c; Civ1G =
-1

—1 1 (R3) —1 —1 (R6)
cicchiaibiHci CZJr =

_ -1
16 = CiCip1aiCibiyicy cilic =
1 1 —1 (R4),(R9)
ai+1CiCi+1C7;bi+1Ci Ci-l—lci =
—1 —1 —1 (RD)
aip1biciciyicic; cic; 0 = ait1by,
9 (R5) (R3),(R4),(R9)
(2) aip1bi(ciciy16i)” = aip1biCip1CiCii1CiCir16 =
(R1),(R6)
Cit1@i11CiCit1bir1cicivic; =
2 1 (®15)
Ci+1cici+1aibi+1(CiciJrlCi) (CiCiJrlci) =
b —1 (R3)-(R6).(R9)
Cit1CiCit1a:bigp1(cicipics) =

11 1 R’RD
aip1biciciprcic; "ci 0 = aiqbi,
3 b 2 (R9) b (R2),(R6)
(3) @it2bi(Cit1CiCivaciv1)” = Git2Cit1CiCitaCit1bipacit1CiCipaCive =
(R16)

Ci+lcici+20i+laibi+2(Ci+1ci0i+20i+l) =
b -1 -1 —1_—1 (R2),(R6),(R9)
Cit1CiCit2Ci+13i0i42C 11 G106 Cipy =
—1 (R1)
ci—i—l = a¢+2bi.
O

1 -1 -1
@i 2biCi11CiCit2Ci+1C 1 C1 L oC;

Sometimes (for computational reasons) we want to have less generators and
therefore the following presentation is useful.

Proposition 5. The monoid SSB,, forn € Z and n > 1 is generated by a,b

and c;, ci_1 fori=1,...,n—1 and is subject to the following relations:
(m1) cic;t=1=cte,

(m2) Cicj = ¢;¢; fori+1l<j<nmn,
(m3) CiCit1Ci = Cit1CiCit1 fori<mn—1,
(m4) ac; = c;a fori # 2,
(mb) be; = ¢;b fori #£ 2,
(m6) acycicy = cacicaa,

(m7) beacicy = cacieab,

(m8) (acacseic)? = (cacsercoa)?,

(m9) (begeserca)? = (cacsercab)?,

(m10) acobey ' = cobey ta,

(m11) ab = ba,

(m12) a’ =a,
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(m13) b* =b,

(m14) ac1b = acy b,

(m15) alereacy)b = alcicacy) ™',
(m16) a(cacserea)b = a(02030102)_1b-

Proof. Set a = ay,b = b; and introduce

ajy1 = Cici+1ai0;4}10;17 bit1 = CiCi+1biC;+11€;1
for ¢ > 1 from the relations (R6), (R7). The relations (R1), (R5) are the
same as (m1), (m3) respectively. From the proof of Prop. 2.2 in [1] (when 7 is
replaced here either by a or b, and o is replaced by c¢), it follows that:

(1) the relations ajag = asay, bibs = bsby (part of (R2)) follow from the
relations (m1), (m8), (m9), (R6), (R7),

(2) other relations from (R2) follow from (m1)-(m5), (R6), (R7),

(3) the relations (R3), (R4) follow from (m1)-(m3), (R6), (R7),

(4) the relations (R8), (R9) follow from (m1), (m6), (m7), (R6), (R7).

For ¢ = 1, the relations (m10), (m14)-(m16) are easily equivalent to (R10),

(R14)-(R16) respectively. Moreover, for ¢ = 1 the relations (R11)-(R13) are the
same as (m11)-(m13) respectively. We now derive the relations (R10)-(R16)
for i > 1. The relation (R10) follows from (m10) and the following inductive
step

—1 _—1 —1 —1 -1 -1 —1
a;bit1 = ci_1cia;-1¢; ¢ 1Cim1bip1c; ) = ci16iai-1¢5  cicir1bici ey ey

—1 -1 ind 1 -1

—-1 . -1 —
:ci_lcici_,_lai_lbicﬂrlci Ci1 = ci_lcici_,_lbiai_lcﬂrlci Ci_1

= bz‘+1Ci—1Cz‘Ci+1Ci_flCi_lci_,llai = biy104.
The relation (R11) follows from (m11) and the following inductive step

—1 —1 ind. -1 -1
i Ci1 = Ciflcibiflaiflci Ci_1

aib; = a;ci_icic; te; by = ¢i_1ciai1bi_ic
= bici,lcic;lc;_llai = biai.
The relation (R12) follows from (m12) and the following inductive step

2 _ _ -1 -1, _ —1 -1 ind. -1 -1
a; = Q305 = A;C;—1C;C; C;_1A; = Cj—1CiQ;—1G;—1C; C; 1 = C;—1C;G;—1C; C;_y

= aici_lcici_lci__ll = a;.
The relation (R13) follows from (m13) by the similar argument as in the relation
(R12).
The relation (R14) follows from (m14) and the following inductive step

2 -1 -1 -1 -1
aibici = aibici_lciflcici_lciflci = aibici_lcici_lci C;_1C;

_ 2 —1.,-1 ind. -1 -1
*Ciflciaiflbiflci_lci 1 = Ciflciaiflbiflci Ci_1

-1 —1
= aibici_lcici Ci_1 = albz
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The relation (R15) follows from (m15) and the following inductive step
2 -1 -1 -1 2
aibiJrl(CiCiJrlCi) = Cj—1CQ;—1C; Ci_lcifle»lCi_l(CiciJrlCi)
-1 -1 -1 -1
= Cj—1CQ;—1C; CiCi+1bici+1Ci Ci_1(CiCi+lci)(Cici+1Ci)

-1 -1 -1
= Ci—lcici+1a1’—1biCi+1ci—1Ci Ci_10i+1ci(cici+1ci)

1

-1 -1 -1
= Ci_1CiCiy10i—1bici1¢ici 1 c; ¢ ci(ciciyicy)

-1 -1 -1
= ci_1CiCi10i—1bi(ci—1cici1)c ¢ ¢y (cicipics)
2 -1 —1 -1
= ¢i_1CiCiv10i1bi(ci—1cici1) ci ¢ ¢y

-1 -1 -1
= Ci,16i0i+1ai,1bici+16i Ci1

= aiCz‘—1CiCi+1Ci_+110i_10i__llbi+1 = a;biy1.
The relation (R16) follows from (m16) and the following inductive step

2
aibit2(Cit1€iCitaCivt)
-1 _—1 -1 _—1 2
= Ci_1CiQi—1C; €1 Ci—1Cibiyac; €1 (Cit1CiCivaCiv1)
-1 -1 -1 - 2
= Ci—1Ci0i—1Ci+1Ci+2bip10; 19 1 C; ¢; 1 (Cit1¢iCitaciyr)

2 -1 -1 —1 —1
= Ciflcici+lci+2ai71bi+1(CiciflciJrlCi) CiyaCit1CG Cia

ind. b -1 -1 -1 -1
= Ci—1CiCi+1Ci4+20i—10;41C; 9C; [1C; "C;

= iCi—1CiCi1Ci42C 50 ¢ e bio = aibito. O
Proposition 6 ([3]). We have the following all (un)knotted surfaces whose
surface singular braids can be defined with two strands IF’%_ = [aci]z, P2 =
[acT ]2, T2 = [ably, KB? = [abci]a, S? = [e1], S2 US? = [1]o. The n-twist-
spun surface-knot of the classical rational link Clky, ka, ..., komy1] in Conway
notation encodes as

Tn(c[klv k27 ) k2m+1D = [aC§2m+lcl—k2m T C§1 bCQ_kl CIfQ T C;k2m+l (016201)2n]3'

Some of knotted surfaces in Yoshikawa’s table are included in the above case
as follows: 60! = 70(C[2]), 8, = 7°(C[3]), 10; = 7°(C[2,1,1]), 105 = 72(C[3]),
105 = 73(C[3]), 109" = 79(C[4]). These and algebraic formulations of other
knotted surfaces in Yoshikawa’s table are summarized in Table 1.

Proposition 7. In the monoid SSB, for n € Z and n > 1 the following
relations hold.

(el) abey # ab,

(e2) act # a,

(e3) b £,

(ed) acy # caa forn > 2,
(eb5) beg # cob forn > 2,
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TABLE 1. Surface singular braid formulations of knotted surfaces.

Name(s) of knotted surface

Surface singular braid form

01, unknotted S? 1]y

21, unknotted T? ably

277, unknotted P2 acy)z

unknotted PZ bey o

unknotted KB abcl]g

72 abey tertey e s

1097 ab(cacics)?]s

7" (rational link Clk1, k2, ..., kam+1]) ‘b(:;k‘c}f2 .- ~c;k2'”“ (c1ca¢1)?)3

81’1, spun surface of Hopf link

(abc2 c; £162 ]4

[
[
[a
[(1 Kamt1 71<2m j
[
[
[

—T,-1
8] bey t c1 026103 Legbey ey tey teies Leals
977 b 3!
1 abey Tzt c3es teacteals
T,=2 = 3 -1
9; (abcy Tez teren) 51 ]4
10%71 spun torus of the trefoil aczq(’]cgbcg et (‘5 030301(‘2@0; c; Ty Tey They ),
1()(1)'01 [acy Ty tescy ey Lt eaacy Tep Loy Teabcd)y
107 [ab0302 crleg ez eacien]y
0,—2 -1 1,1, 2
107 [abc2 ] (’2 c (’;rz r;]
10972 [ 2b 1]
o acy c3c2<1 Lc3bey cl tey 02 £162 4
10,77 [ b 200]
lz y a(’2 (‘1 (‘3 (’2 0261 620362 6102 01624
107 [(ab02 03 610201 )]4
91 [(l(z (1 (5 (2 (4 (5 (2(/1 C3Cz(’3(‘4(3203(’1(‘2b(2
-1
ertesteytertesteg ter teser teg teg ey teacy teg
1 _ 1 —
*C1Cy C4C5C4C3C4CH CeCr  Cy C7CGC563C402630102]8
(e6) c1Ca # Ccocy formn > 2,
2
(e7) (c1e201)” # 1 forn > 2.

Proof. For elements of the monoid SSB, it follows that (see Theorem 3 and
Proposition 6):

[abci], = KB2US*U - - USE#T2US*U---US? = [abl,,
| ————
n—2 n—2
laci)y = [be; '] =PLUSP U - UST £ P2 US U+ US? = [bey]y = [act n.
n—2 n—2
This implies the relations (el)-(e3). Consider now the spun 2-knot of the

trefoil, it is the well known nontrivial 2-knot, as its group is isomorphic to the
group of the classical trefoil. It follows from Prop. 6 that this knotted 2-sphere
can be presented as 7°(T(2,3)) = [ac;®bc3]s, we also have trivial 2-sphere
THT(2,3)) = [acy *be3(creact)?]3 (see [11] for the proof), therefore we have

T2 L |_| S? = [ab], # [acy *bes], # [acy ®bes(crezer)?]n
n—2

# [abercol, = KB L | | S2.
n—3
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This, together with the relations (ml), (m3)-(m7), (m14), (m15) implies the
relations (e4)-(e7). O

4. Representations

Let K throughout this paper denote a field. By a representation of a monoid
D of dimension n over K we mean a homomorphism p of D into the multiplica-
tive monoid of M, (K) of all n x n matrices with entries in K. If p is injective,
then the representation is said to be faithful. Denote I; and 0; the identity
matrix and the zero matrix of size t x t respectively.

Proposition 8. For n,m > 2 and any faithful representation ¢ : SSB, —
M, (K), there is a faithful representation p : SSB, — M,,(K) such that:

(p1) pla) =Is ® 0p_s where s € {1,...,m — 1},
(p2) p(0) & {O0m; Im},

(p3) p(a) # p(b),

(p4) p(a)p(b) # p(a),

(p5) p(a)p(b) # p(b),

(p6) p(a)p(b)p(c1) # p(a)p(b),

(p7) p(a)p(cz) # plc2)p(a) forn >2,
(p8) p(b)p(c2) # ple2)p(b) forn >2,
(P9) plc)p(c2) # plez)p(er) forn >2,
(p10)  (p(er)plez)p(er))? # I forn>2,
(p11) pla)p(c1)® # pla),

(p12) p(b)p(er)? # p(b).

Let us recall the following property of idempotent matrix.

Lemma 9. If a matriz X with entries in a field K satisfies X? = X, then it
is diagonalizable and all its eigenvalues are either 0 or 1.

Proof. Consider X as an endomorphism operator on a vector space V. Take
any nonzero vector u € imX, then there exists v € V' such that Xv = u, from
the idempotency relation X2 = X we have u = Xv = X Xv = Xu which yields
u ¢ kerX, so we have V = imX @ kerX, therefore X is diagonalizable. If X is
its eigenvalue, then there exists nonzero vector v € V such that A\v = Xv =
X2y = X v = A\2v. We must have then that A(A — 1) = 0, and because K is a
field, this implies A € {0,1}. O

Proof of Proposition 8. The monoid M,,(K) of m X m matrices over K can
be identified with Endg (V'), the monoid of endomorphisms of a vector space
V over K of finite dimension m. Applying Lemma 9 for X = ¢(a), we can
conclude that there exists a matrix P € GL,,(K) such that P~'¢(a)P = I, &
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Opm—s, where s € {0,...,m}. We define a new representation by setting p(x) =
P~1¢(x)P for any z € SSB,,, and now its injectivity follows immediately from
injectivity of ¢. It proves (pl) beside the cases s = 0, s = m which will be
excluded later.

From Proposition 7 we have abc; # ab, ac? # a and be? # b, and together
with the relations (m1) and (m12)-(m14) we moreover have a # b, b # 1,
a # 1, hence from injectivity of p we have the cases (p2), (p3), (p6), (pll),
(p12) and remaining cases s = 0, s = m from (pl). The relations (p4) and (p5)
follow from (m14) together with (p11) and (p12) respectively. The remaining
relations (p7)-(p10) follow directly from (e4)-(e7). O

Proposition 10. If a representation p : SSB,, — My, (K) for n,m > 2 satis-
fies rank(p(a)) =1 or rank(p(b)) = 1, then p is not faithful.

Proof. From the symmetric role of @ and b in SSB,, we can assume that
rank(p(a)) = 1. Denote A = p(a), B = p(b) and B = (b; j); je(1,...,m}- From
the relation (pl) of Proposition 8 we can assume that A = I} @ 0,,,—1, then
from AB = BA it follows that b172 == bLm =0 and b271 == bm71 =0.
This implies that AB = (b1,1) ® 0,1, and combining it with B2 = B gives us
the relation AB = A that contradicts the relation (p4) of Proposition 8. O

From Proposition 8 and Proposition 10 we immediately have the following.
Corollary 11. No representation p : SSB,, — Ms(K) for n > 2 is faithful.

Example 12. A faithful representation p of the monoid SSB;y can be defined
(in a field of characteristic zero) as follows:

1 0 0 0 0 O 2 0 0
play=1 0 1 0 |, pb)= 0 1 0 |, ple1)= 0 -1 0O
0 0 O 0 0 1 0O 0 2

Theorem 13. No representation p : SSB,, — M3(K) for n > 3 is faithful.

Proof. Assume the contrary, that p is faithful and denote X := p(z) for z €
{a,b,c1}. From the relations (m11) and (m13) of Prop. 5 we have B? = B and
AB = BA. From Prop. 8 we can assume that B & {03, I3}, AB # A, AB # B,
ABC, # AB and that A = I, ©® 0;. Let B = (b; ;)i je{1,2,33- Then from the
relation AB = BA it follows that B = G & (bs,3) for some matrix G € My (K).
From the relation B> = B it follows that G* = G and b3 3 € {0,1}. If b33 =0,
then AB = G & 0; = B, a contradiction, so it follows that b33 = 1, and
combining it with B # I35 gives moreover detG = 0.

Consider now C1 = (¢i ;)i jef1,2,3}, from the relation (m4) it follows that
C1 = F @ (c3,3) for some matrix F' € My(K). Non-invertability of matrix G
together with the relation ABC; # AB implies that G ¢ {02,152} and GF #
G, additionally from the relations (ml), (m5) and (ml14) we have detF # 0,
GF = FG and GF? = G. Consider the following two main cases.
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Case (a). Assume by 1b22b1 2021 = 0. Then by detG = 0 we must have
that by 2b21 = 0. From the symmetric role of by 2 and by 1, without loss of
generality, assume by o = 0. Then from G* = G and G ¢ {02, 2} we obtain
that G is one of the two possible forms: (7, ¢) or (,,;1 0). From GF = FG it
follows that ¢ 2 = 0, and the relation GF? =@ together with GF # G yields

that F' is one of the two possible forms (_b2 e _Ol> or (71,2 1(_11+c2 2) o )

one for each mentioned type of G respectively. Additionally from (ml) and
(p11) we have that ¢1; # 0, ¢f ; # 1 in the first and ¢y # 0, ¢35 # 1 in the
second case respectively. From (m1) and (pl2) we moreover have c3 3 # 0 and
¢33 # 1 in both cases.

Case (b). Assume b7,1b2 2b1 2021 # 0. Then from the relations (m1), (m4),
(mb), (m1l), (m13), (m14), (p2), (p4)-(p6), (p1l) and (pl2) it follows that
B, Cy are in the form:

b1,1 b1,2
B = ( (A=b11)bia 1—b11 >@Ih

b1,2

(b1,1—1)c1,2—b1 2 €19
b :
Ci = < (1—171,11)’1?1,161,2 _biacie -1 > D (6373)7
b7, b1,2
for by 1b1,2¢1,2¢3 3 #0, C1,2 # *51,2, C1,2 # *21)1,2, b1,1 # 1 and Cg,g # 1.
Introducing now a matrix p(cz) and making simple, but tedious computa-
tions (summarized in the following Appendix) we can show that in both of the
above cases, the relations (ml), (m3), (m6), (m7), (m10), (ml15), (p7), (p8)
and (p10) form a self-contradictory set. O

Appendix

Let p(c2) = (di5)i jef1,2,3}, we consider further subcases.

Case (al). Assume b171 =0, b2)2 =1, Co0 = —1 and C2,1 = —b271(1 + 0171).
Consider further two cases.

Case (ala). Assume d3 3 = 0. Consider further two cases.

Case (alal). Assume ds2 = 0. From (ml) and (m3) we have d3; # 0,
di1 =cs3,d12 =0 and dy 3 =0, a contradiction with (ml).

Case (ala2). Assume dsz 2 # 0. From (ml) and (m10) we have ds 1 = ba1d3 2,
now (m3) with (m6) contradict (ml).

Case (alb). Assume d3 3 # 0. Consider further two cases.

Case (albl). Assume d3 o = 0. From (ml), (m3) and (m10) we have d3; =0,
now (ml) with (m3) yield ds 3 = c3,3. Consider further two cases.

Case (albla). Assume d; 2 = 0. From (m10) we have d; 3 = 0, from (m3) it
follows that dqi,1 = ¢1,1 and da 2 = —1. Now (m6) with (p7) contradict (p10).

Case (alblb). Assume d; 2 # 0. From (m15) we have dg 3 = ﬁ(dlﬁdg’g —

C§,3d173) and d271 = ﬁ(é +d1,1d272). From (p7) we have d1,3 ?é 0, now (In3)

,2

with (m6) contradict (m15).
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Case (alb2). Assume d3s # 0. From (m6) we have dy; = bg,lc%,ldl,l —

2 2 2
c1,1d1,1d3,1 c3,3d3,1d3,3 2 3 1d1,2d3 1
boadiy — g = — 2= and dap = ba1c 1d1 2 —boadi o — " —

2 i _ 1
C3’3d373. From (m3) we have d273 = R(—b2710171d173d3)2 - b2)1d173d3}2 -

3 3d3,3 + c33d3 3 + c1,1d1 3d31). Consider further two cases.
Case (alb2a). Assume d3; = 0. Form (ml) and (m7) we have di 3 =

di2 =1 _
ds,2 | and d171 =

¢1,1- From (m3), (m6), (m10) and (p8) we have b1 =0, ¢f | =1 and ¢3 5 = 1,
a contradiction with (p10).

Case (alb2b). Assume d3; # 0. Consider further two cases.

Case (alb2bl). Assume d;2 = 0. From (m3) we have d13 =0, d11 = c11
and ds 3 = Cg‘gﬁ Now (m15) contradicts (p10).

Case (alb2b2). Assume dj2 # 0. Form (ml), (m7) and (ml0) we have

(ds,3 — Cl;jgdl’l). From (m3) and (m10) we obtain ds 3 =
3,3

2 . dq sds 2 ds
ba1 = ngz; and di1 = —03’;{ 11;1.:’2 + 035’? :’5 + dl(f;f”l. From (m3) we have
dss = ﬁ, and (m15) yields ¢33 4+ ¢33 = —1. This together with (m10)

implies dq,3 = 0, a contradiction with (p10).

Case (a2). Assume b1 1 =1, b0 =0, c11 = —1and co1 = —ba1(1 + c22).
Consider further two cases.

Case (a2a). Assume d3 3 = 0. Consider further two cases.

Case (a2al). Assume djo = 0. From (ml) and (m3) we have da2 = c22.
Consider further two cases.

Case (a2ala). Assume di 3 = 0. From (ml) and (m3) we have di1 = —1,
ds s = c3,3, from (m10) we obtain dy 3 = 0. From (p7) and (m6) we obtain
3 3 =1, from (p8) and (m7) we obtain ¢3 , = 1, a contradiction with (p10).
Case (a2alb). Assume dy 3 # 0. From (m3) we have dy1 = ¢33(d3 3+ 1)

_ c3,3d3,3(c3,3—d3,3

and dz; = o )| from (m6) we have dz3 = and di; =

e
c3,3+1
Cg,s
c33+1°
d271 = b271(—02,2 + C3.3 + mﬁ — 1) and d273 = 17271031737 a contradiction with

(p8).
Case (a2a2). Assume dj 2 # 0. From (m6) we have d3; = 0, and (m7) yields
dig = bg,lcggdl’z—b2,1d172—c§,2d2’2. From (m1) and (m3) it follows that ds 3 =

. From (p7) we have dy 3 # 0,

. b2,1¢5 5d12d2 2—b2 15 5d1 2d2 2—Ch 4d3 5 +ch
from (m6) it follows that dy; = ——22—=22 2‘222'3112'2 22 22227 33
2,241,

(m15) it follows that 3 , = 1, a contradiction with (p10).

Case (a2b). Assume d3 2 # 0. Then from (m3) we have the relations

do 1 — dy.1(b2,1(c2,241)ds 24d3 1) —c3,3(b2,1(c2,24+1)d3 24+d3.1(d3,3+1))
2,1 = c2,2d3,2

d2’2 _ d1,2(b2,1(02,2+1)d3,2cir<ial‘i,;)2+03,3d3,2(02,2*d3,3) and

Ao« — dy 3(ba,1(c2,24+1)d3 2+d3 1)+c3.3d3.3(c3,3—d3 3
2,3 — c2,2d3,2

From (m15) we have ¢33 = 1, then from (m6) and (m10) we have

2 3
¢3,001,3d2,2—¢3 3d1,3

3,3, from (m6) we have dp 3 = 2 s

. From

)

) Consider further two cases.
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Case (a2bl). Assume d3; = 0. Consider further two cases.

Case (a2bla). Assume b; 3 = 0. Then (m10) implies ¢z 2 = 0, a contradiction
with (m1).

Case (a2blb). Assume b; 3 # 0. Then (m10) implies dy 3 = b2.1d1,2d5,5d1,1d5.5

ba 1d3 2

again from (m10) we obtain d3 2 = 0, a contradiction.

Case (a2b2). Assume d3 ;1 # 0. Consider further two cases.

Case (a2b2a). Assume cz2 = c33. Then (ml) and (ml15) yields di; =

—52,1C§,2d1,2—b2‘162,2d1,2+1
ca,2(c2,2+1)

, later from (m10) we obtain
b 39 (—d13)ds1 — ca0dy 3d3 1 + ds 3
21 =
(B0 + c2,2) diads

Again from (m10) we obtain ds 3 = 0, a contradiction with (m1).
Case (a2b2b). Assume c3 2 # c3 3. Then from (m6) we have

(co2+1)d1s (boidsa +ds1) + c3.3¢5 5d3 o

(c2,2 — €3,3) €3,3d3.2

d33:

)

from (m3) we can obtain

d - d1,2(d1,2(b2,1(02,2+1)d3,2+((13,3+1)d3,1)+d3,2(62‘2(C§,3+C3,3+d1,1)—03‘3611,1—ngg))
1.3 = (c2,2—c3,3)c3,3d3 , ’
Then from (m3) we have ds 1 = —ba 1 (c2,2 + 1) d3 2. Consider further two cases.
Case (a2b2b1l). Assume by 3 = 0. Then (m10) implies ¢z 2 = 0, a contradic-

tion with (ml).

2
Case (a2b2b2). Assume by 2 # 0. Then (ml0) implies by; = (sziiifﬂl,z’
again from (m10) we have c¢3 3 = —1, a contradiction.
Case (bl). Assume ds 3 = 0. Consider further two cases.
Case (bla). Assume d32 = 0. From (ml) we have ds; # 0, from (m10) we
have d2 3 = 0 and d; 3 = 0, a contradiction with (m1).
Case (blb). Assume d3s # 0. From (ml) and (ml0) we have d3; =

% ordszq = %, in both of those cases (m3) contradicts (m1).
Case (b2). Assume d33 # 0. From (ml0) we have dy; = %,

d3o = % and do 3 = 0. From (ml) we have dao # 0 then (m6) yields
dy 3 = 0, the relation (p7) yields ds; # 0, and (m3) yields d3 3 = c33. Now
(m3) with (m6) contradict (p10).
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