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PRESENTATIONS AND REPRESENTATIONS

OF SURFACE SINGULAR BRAID MONOIDS

Micha l Jab lonowski

Dedicated to Ma lgorzata

Abstract. The surface singular braid monoid corresponds to marked
graph diagrams of knotted surfaces in braid form. In a quest to resolve

linearity problem for this monoid, we will show that if it is defined on

at least two or at least three strands, then its two or respectively three
dimensional representations are not faithful. We will also derive new

presentations for the surface singular braid monoid, one with reduced the

number of defining relations, and the other with reduced the number of
its singular generators. We include surface singular braid formulations of

all knotted surfaces in Yoshikawa’s table.

1. Introduction

The well known Artin representation of the braid group Bn may be used
to calculate the group of a knot. Applying Fox’ free differential calculus to
this representation, we can derive the Burau representation. Its irreducible
part may be used to calculate the Alexander polynomial of a knot. In [2], B.
Gemein extend the Artin and the Burau representation to a representation of
the Baez-Birman singular braid monoid SBn. A monoid is said to be linear if
it is isomorphic to a submonoid of matrices Mn(K) for some natural number n
and some field K. In [1], O. T. Dasbach and B. Gemein showed the faithfulness
of the two dimensional extended Burau representation of SB3, therefore this
monoid is linear.

It is natural then to search for a faithful representation of the surface singular
braid monoid SSBn defined in [3], where the author classified knotted surfaces
in R4 that have surface singular braid index equal to one or two, and also showed
that there exist infinitely many surface-link types that are closures of elements
from SSB3. We will show in this paper that any representation of SSBn, for
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any n > 3, to the multiplicative monoid of all 2 × 2 or 3 × 3 matrices with
entries in a given field, is not faithful. We will also derive new presentations
for the surface singular braid monoid, one with reduced the number of defining
relations, and the other with reduced the number of its defining non-classical
generators.

2. Marked graph diagrams

An embedding (or its image) of a closed (i.e., compact, without bound-
ary) surface into R4 is called a knotted surface (or surface-link). Two knotted
surfaces are equivalent (or have the same type) if there exists an orientation
preserving homeomorphism of the four-space R4 to itself (or equivalently auto-
homeomorphism of the four-sphere S4), mapping one of those surfaces onto the
other. We will work in the standard smooth category. Let R3

t denote R3 × {t}
for t ∈ R.

It is well known ([4, 5, 8]) that for any knotted surface F , there exists a
surface-link F ′ satisfying the following: F ′ is equivalent to F and has only
finitely many Morse’s critical points, all maximal points of F ′ lie in R3

1, all
minimal points of F ′ lie in R3

−1, all saddle points of F ′ lie in R3
0.

The zero section R3
0∩F ′ of the surface F ′ gives us then a 4-valent graph. We

assign to each vertex a marker that informs us about one of the two possible
types of saddle points (see Fig. 1) depending on the shape of R3

−ε∩F ′ or R3
ε∩F ′

for a small real number ε > 0. The resulting graph is called a marked graph.
Making now a projection in general position of this graph to R2 and assigning

types of classical crossings between regular arcs, we obtain a marked graph
diagram. For a marked graph diagram D, we denote by L+(D) and L−(D) the
diagrams obtained from D by smoothing every vertex as presented in Fig. 1 for
+ε and −ε, respectively.

−ε 0 +ε

Figure 1. Rules for smoothing a marker.

Theorem 1 ([6,7,9]). Any two marked graph diagrams representing the same
type of knotted surface are related by a finite sequence of Yoshikawa local moves
presented in Fig. 2 (and an isotopy of the diagram in R2).

3. Surface singular braid monoid

We can present every marked diagram of a surface-link in a braid form
defined as the geometric closure of a singular braid with markers. We have the
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Ω1 Ω2 Ω3 Ω4 Ω′4 Ω5 Ω6 Ω′6 Ω7 Ω8

Figure 2. A generating set of Yoshikawa moves (compare [10]).

monoid SSBm that corresponds to marked graph diagrams in braid form on m
strands. For m = 1 this monoid is trivial with one element, let us assume that
m > 1. Elements of SSBm, called surface singular braids, are generated by four
types of elements ai, bi, ci, c

−1
i for i = 1, . . . ,m − 1, where the correspondence

of types of crossings and types of markers between i-th and i+ 1-th strand (in
the horizontal position, numbered from the top to the bottom) is presented in
Fig. 3.

ai =

bi =

, ci =

, c−1
i =

i

i

i+ 1

i+ 1

i

i

i+ 1

i+ 1

i

i

i+ 1

i+ 1

i

i

i+ 1

i+ 1

Figure 3. The correspondence of monoid generators.

Definition 2 ([3]). Let m ∈ Z, m > 1 and i, k, n ∈ {1, . . . ,m − 1} such that
|k − i| = 1, moreover let xi, yi ∈ {ai, bi, ci, c−1

i }. Monoid SSBm is subject to
the following relations.

(A1) cic
−1
i = 1,

(A2) xiyn = ynxi for n 6= k,
(A3) xickci = ckcixk,
(A4) xic

−1
k c−1

i = c−1
k c−1

i xk,
(A5) aibk = bkai,
(A6) aibi−2(ci−1ci−2cici−1)2 = aibi−2 for i > 2,
(A7) biai−2(ci−1ci−2cici−1)2 = biai−2 for i > 2,
(A8) a2

i = ai,
(A9) b2i = bi,
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(A10) aibic
2
i = aibi,

(A11) aibk(cickci)
2 = aibk.

We will indicate our closure of a marked graph diagram in a braid form by
adding square brackets around its words and adding lower index after it, saying
how many strands we are joining. Let us further denote by CSBm a subset of
SSBm containing only those elements x such that L+([x]m) and L−([x]m) are
diagrams of trivial classical links. We define the following additional relations
on closed braids.

(C1) [xiSn]n = [Snxi]n for n ∈ Z+ and i < n and xiSn ∈ CSBn,
(C2) [Sn]n = [Snxn]n+1 for n ∈ Z+ and Sn ∈ CSBn.

Theorem 3 ([3]). Making change in a closed braid word formulation of a
knotted surface by using one of relations from (A1)-(A11) or (C1)-(C2), we
receive a formula of a knotted surface of the same type.

Proposition 4. The monoid SSBm for m ∈ Z and m > 1 is generated by
ai, bi, ci, c

−1
i for i, j ∈ {1, . . . ,m − 1}, xi, yi ∈ {ai, bi, ci, c−1

i } and is subject to
the following relations:

cic
−1
i = 1 = c−1

i ci,(R1)

xiyj = yjxi for |i− j| > 1,(R2)

aici = ciai,(R3)

bici = cibi,(R4)

ci+1cici+1 = cici+1ci for i < m− 1,(R5)

ai+1cici+1 = cici+1ai for i < m− 1,(R6)

bi+1cici+1 = cici+1bi for i < m− 1,(R7)

aici+1ci = ci+1ciai+1 for i < m− 1,(R8)

bici+1ci = ci+1cibi+1 for i < m− 1,(R9)

aibi+1 = bi+1ai for i < m− 1,(R10)

aibi = biai,(R11)

a2
i = ai,(R12)

b2i = bi,(R13)

aibic
2
i = aibi,(R14)

aibi+1(cici+1ci)
2 = aibi+1 for i < m− 1,(R15)

aibi+2(ci+1cici+2ci+1)2 = aibi+2 for i < m− 2.(R16)

Proof. Some relations from (A2)-(A4) that includes c−1
i are known, from clas-

sical singular braid theory, to follow from (R1)-(R9). The remaining relations
are either the same or derived as follows.
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(1) biai+1
(R1)
= biai+1cici+1c

−1
i+1c

−1
i

(R6)
= bicici+1aic

−1
i+1c

−1
i

(R1),(R3),(R4)
=

cibici+1ciaic
−1
i c−1

i+1c
−1
i

(R9)
= cici+1cibi+1aic

−1
i c−1

i+1c
−1
i

(R10)
=

cici+1ciaibi+1c
−1
i c−1

i+1c
−1
i

(R3)
= cici+1aicibi+1c

−1
i c−1

i+1c
−1
i

(R6)
=

ai+1cici+1cibi+1c
−1
i c−1

i+1c
−1
i

(R4),(R9)
=

ai+1bicici+1cic
−1
i c−1

i+1c
−1
i

(R1)
= ai+1bi,

(2) ai+1bi(cici+1ci)
2 (R5)

= ai+1bici+1cici+1cici+1ci
(R3),(R4),(R9)

=

ci+1ai+1cici+1bi+1cici+1ci
(R1),(R6)

=

ci+1cici+1aibi+1(cici+1ci)
2(cici+1ci)

−1 (R15)
=

ci+1cici+1aibi+1(cici+1ci)
−1 (R3)-(R6),(R9)

=

ai+1bicici+1cic
−1
i c−1

i+1c
−1
i

(R1)
= ai+1bi,

(3) ai+2bi(ci+1cici+2ci+1)2 (R9)
= ai+2ci+1cici+2ci+1bi+2ci+1cici+2ci+1

(R2),(R6)
=

ci+1cici+2ci+1aibi+2(ci+1cici+2ci+1)
(R16)
=

ci+1cici+2ci+1aibi+2c
−1
i+1c

−1
i+2c

−1
i c−1

i+1

(R2),(R6),(R9)
=

ai+2bici+1cici+2ci+1c
−1
i+1c

−1
i+2c

−1
i c−1

i+1

(R1)
= ai+2bi.

�

Sometimes (for computational reasons) we want to have less generators and
therefore the following presentation is useful.

Proposition 5. The monoid SSBn for n ∈ Z and n > 1 is generated by a, b
and ci, c

−1
i for i = 1, . . . , n− 1 and is subject to the following relations:

cic
−1
i = 1 = c−1

i ci,(m1)

cicj = cjci for i+ 1 < j < n,(m2)

cici+1ci = ci+1cici+1 for i < n− 1,(m3)

aci = cia for i 6= 2,(m4)

bci = cib for i 6= 2,(m5)

ac2c
2
1c2 = c2c

2
1c2a,(m6)

bc2c
2
1c2 = c2c

2
1c2b,(m7)

(ac2c3c1c2)2 = (c2c3c1c2a)2,(m8)

(bc2c3c1c2)2 = (c2c3c1c2b)
2,(m9)

ac2bc
−1
2 = c2bc

−1
2 a,(m10)

ab = ba,(m11)

a2 = a,(m12)
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b2 = b,(m13)

ac1b = ac−1
1 b,(m14)

a(c1c2c1)b = a(c1c2c1)−1b,(m15)

a(c2c3c1c2)b = a(c2c3c1c2)−1b.(m16)

Proof. Set a = a1, b = b1 and introduce

ai+1 = cici+1aic
−1
i+1c

−1
i , bi+1 = cici+1bic

−1
i+1c

−1
i

for i > 1 from the relations (R6), (R7). The relations (R1), (R5) are the
same as (m1), (m3) respectively. From the proof of Prop. 2.2 in [1] (when τ is
replaced here either by a or b, and σ is replaced by c), it follows that:

(1) the relations a1a3 = a3a1, b1b3 = b3b1 (part of (R2)) follow from the
relations (m1), (m8), (m9), (R6), (R7),

(2) other relations from (R2) follow from (m1)-(m5), (R6), (R7),
(3) the relations (R3), (R4) follow from (m1)-(m3), (R6), (R7),
(4) the relations (R8), (R9) follow from (m1), (m6), (m7), (R6), (R7).

For i = 1, the relations (m10), (m14)-(m16) are easily equivalent to (R10),
(R14)-(R16) respectively. Moreover, for i = 1 the relations (R11)-(R13) are the
same as (m11)-(m13) respectively. We now derive the relations (R10)-(R16)
for i > 1. The relation (R10) follows from (m10) and the following inductive
step

aibi+1 = ci−1ciai−1c
−1
i c−1

i−1ci−1bi+1c
−1
i−1 = ci−1ciai−1c

−1
i cici+1bic

−1
i+1c

−1
i c−1

i−1

= ci−1cici+1ai−1bic
−1
i+1c

−1
i c−1

i−1
ind.
= ci−1cici+1biai−1c

−1
i+1c

−1
i c−1

i−1

= bi+1ci−1cici+1c
−1
i+1c

−1
i c−1

i−1ai = bi+1ai.

The relation (R11) follows from (m11) and the following inductive step

aibi = aici−1cic
−1
i c−1

i−1bi = ci−1ciai−1bi−1c
−1
i c−1

i−1
ind.
= ci−1cibi−1ai−1c

−1
i c−1

i−1

= bici−1cic
−1
i c−1

i−1ai = biai.

The relation (R12) follows from (m12) and the following inductive step

a2
i = aiai = aici−1cic

−1
i c−1

i−1ai = ci−1ciai−1ai−1c
−1
i c−1

i−1
ind.
= ci−1ciai−1c

−1
i c−1

i−1

= aici−1cic
−1
i c−1

i−1 = ai.

The relation (R13) follows from (m13) by the similar argument as in the relation
(R12).
The relation (R14) follows from (m14) and the following inductive step

aibic
2
i = aibici−1c

−1
i−1cici−1c

−1
i−1ci = aibici−1cici−1c

−1
i c−1

i−1ci

= ci−1ciai−1bi−1c
2
i−1c

−1
i c−1

i−1
ind.
= ci−1ciai−1bi−1c

−1
i c−1

i−1

= aibici−1cic
−1
i c−1

i−1 = aibi.
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The relation (R15) follows from (m15) and the following inductive step

aibi+1(cici+1ci)
2 = ci−1ciai−1c

−1
i c−1

i−1ci−1bi+1c
−1
i−1(cici+1ci)

2

= ci−1ciai−1c
−1
i cici+1bic

−1
i+1c

−1
i c−1

i−1(cici+1ci)(cici+1ci)

= ci−1cici+1ai−1bic
−1
i+1ci−1c

−1
i c−1

i−1ci+1ci(cici+1ci)

= ci−1cici+1ai−1bici−1cic
−1
i+1c

−1
i c−1

i−1ci(cici+1ci)

= ci−1cici+1ai−1bi(ci−1cici−1)c−1
i+1c

−1
i c−1

i−1(cici+1ci)

= ci−1cici+1ai−1bi(ci−1cici−1)2c−1
i+1c

−1
i c−1

i−1

ind.
= ci−1cici+1ai−1bic

−1
i+1c

−1
i c−1

i−1

= aici−1cici+1c
−1
i+1c

−1
i c−1

i−1bi+1 = aibi+1.

The relation (R16) follows from (m16) and the following inductive step

aibi+2(ci+1cici+2ci+1)2

= ci−1ciai−1c
−1
i c−1

i−1ci−1cibi+2c
−1
i c−1

i−1(ci+1cici+2ci+1)2

= ci−1ciai−1ci+1ci+2bi+1c
−1
i+2c

−1
i+1c

−1
i c−1

i−1(ci+1cici+2ci+1)2

= ci−1cici+1ci+2ai−1bi+1(cici−1ci+1ci)
2c−1
i+2c

−1
i+1c

−1
i c−1

i−1

ind.
= ci−1cici+1ci+2ai−1bi+1c

−1
i+2c

−1
i+1c

−1
i c−1

i−1

= aici−1cici+1ci+2c
−1
i+2c

−1
i+1c

−1
i c−1

i−1bi+2 = aibi+2. �

Proposition 6 ([3]). We have the following all (un)knotted surfaces whose
surface singular braids can be defined with two strands P2

+ = [ac1]2, P2
− =

[ac−1
1 ]2, T2 = [ab]2, KB2 = [abc1]2, S2 = [c1]2, S2 t S2 = [1]2. The n-twist-

spun surface-knot of the classical rational link C[k1, k2, . . . , k2m+1] in Conway
notation encodes as

τn(C[k1, k2, . . . , k2m+1])=[ac
k2m+1

2 c−k2m1 · · · ck12 bc
−k1
2 ck21 · · · c

−k2m+1

2 (c1c2c1)2n]3.

Some of knotted surfaces in Yoshikawa’s table are included in the above case
as follows: 60,1

1 = τ0(C[2]), 81 = τ0(C[3]), 101 = τ0(C[2, 1, 1]), 102 = τ2(C[3]),

103 = τ3(C[3]), 100,1
1 = τ0(C[4]). These and algebraic formulations of other

knotted surfaces in Yoshikawa’s table are summarized in Table 1.

Proposition 7. In the monoid SSBn for n ∈ Z and n > 1 the following
relations hold.

abc1 6= ab,(e1)

ac21 6= a,(e2)

bc21 6= b,(e3)

ac2 6= c2a for n > 2,(e4)

bc2 6= c2b for n > 2,(e5)
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Table 1. Surface singular braid formulations of knotted surfaces.

Name(s) of knotted surface Surface singular braid form
01, unknotted S2 [1]1
21

1, unknotted T2 [ab]2
2−1

1 , unknotted P2
+ [ac1]2

unknotted P2
− [bc1]2

unknotted KB2 [abc1]2
70,−2

1 [abc−1
2 c−2

1 c−1
2 c−1

1 ]3
100,1

2 [ab(c2c
2
1c2)2]3

τn(rational link C[k1, k2, . . . , k2m+1]) [ac
k2m+1

2 c−k2m1 · · · ck12 bc
−k1
2 ck21 · · · c

−k2m+1

2 (c1c2c1)2n]3
81,1

1 , spun surface of Hopf link [(abc−1
2 c−1

3 c1c2)2]4
8−1,−1

1 [bc−1
2 c−1

1 c2c
2
1c
−1
3 c2bc

−1
2 c−1

1 c−1
2 c21c

−1
3 c2]4

90,1
1 [abc−1

2 c−1
3 c22c

−1
3 c2c

2
1c2]4

91,−2
1 [(abc−1

2 c−1
3 c1c2)2c−1

1 ]4
101

1, spun torus of the trefoil [ac2c3c1c2bc
−1
2 c−1

1 c−1
3 c32c3c1c2ac

−1
2 c−1

1 c−1
3 c−1

2 bc−3
2 ]4

101,1
1 [ac−1

2 c−1
1 c3c

−1
2 bc−1

2 c21c2ac
−1
2 c−1

1 c−1
3 c2bc

2
2]4

100,0,1
1 [abc3c

−1
2 c−2

1 c−1
2 c−1

3 c2c
2
1c2]4

100,−2
1 [abc−1

2 c−1
1 c−1

2 c−1
1 c3c

−2
2 c3]4

100,−2
2 [ac−1

2 c3c2c
−1
1 c22bc

−1
2 c−1

1 c−1
3 c−1

2 c1c
−1
2 ]4

10−1,−1
1 [ac−1

2 c−1
1 c−1

3 c2bc2c
−1
1 c2c3c

−1
2 c1c

−1
2 c21c2]4

10−2,−2
1 [(abc−1

2 c−1
3 c1c2c

−1
1 )2]4

91 [ac−1
2 c−1

1 c−1
3 c−1

2 c−1
4 c−2

3 c2c
−1
1 c3c2c3c4c2c3c1c2bc

−1
2 ·

·c−1
1 c−1

3 c−1
2 c−1

4 c−1
5 c−1

6 c−1
4 c5c

−1
7 c−1

6 c−1
4 c−1

3 c4c
−1
2 c−1

3 ·
·c1c−1

2 c4c5c4c3c4c
−1
5 c6c

−1
5 c−1

4 c7c6c5c3c4c2c3c1c2]8

c1c2 6= c2c1 for n > 2,(e6)

(c1c2c1)2 6= 1 for n > 2.(e7)

Proof. For elements of the monoid SSBn it follows that (see Theorem 3 and
Proposition 6):

[abc1]n = KB2 t S2 t · · · t S2︸ ︷︷ ︸
n−2

6= T2 t S2 t · · · t S2︸ ︷︷ ︸
n−2

= [ab]n,

[ac1]n = [bc−1
1 ]n = P2

+ t S2 t · · · t S2︸ ︷︷ ︸
n−2

6= P2
− t S2 t · · · t S2︸ ︷︷ ︸

n−2

= [bc1]n = [ac−1
1 ]n.

This implies the relations (e1)-(e3). Consider now the spun 2-knot of the
trefoil, it is the well known nontrivial 2-knot, as its group is isomorphic to the
group of the classical trefoil. It follows from Prop. 6 that this knotted 2-sphere
can be presented as τ0(T (2, 3)) = [ac−3

2 bc32]3, we also have trivial 2-sphere
τ1(T (2, 3)) = [ac−3

2 bc32(c1c2c1)2]3 (see [11] for the proof), therefore we have

T2 t
⊔
n−2

S2 = [ab]n 6= [ac−3
2 bc32]n 6= [ac−3

2 bc32(c1c2c1)2]n

6= [abc1c2]n = KB2 t
⊔
n−3

S2.
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This, together with the relations (m1), (m3)-(m7), (m14), (m15) implies the
relations (e4)-(e7). �

4. Representations

Let K throughout this paper denote a field. By a representation of a monoid
D of dimension n over K we mean a homomorphism ρ of D into the multiplica-
tive monoid of Mn(K) of all n×n matrices with entries in K. If ρ is injective,
then the representation is said to be faithful. Denote It and 0t the identity
matrix and the zero matrix of size t× t respectively.

Proposition 8. For n,m > 2 and any faithful representation φ : SSBn →
Mm(K), there is a faithful representation ρ : SSBn →Mm(K) such that:

ρ(a) = Is ⊕ 0m−s where s ∈ {1, . . . ,m− 1},(p1)

ρ(b) 6∈ {0m, Im},(p2)

ρ(a) 6= ρ(b),(p3)

ρ(a)ρ(b) 6= ρ(a),(p4)

ρ(a)ρ(b) 6= ρ(b),(p5)

ρ(a)ρ(b)ρ(c1) 6= ρ(a)ρ(b),(p6)

ρ(a)ρ(c2) 6= ρ(c2)ρ(a) for n > 2,(p7)

ρ(b)ρ(c2) 6= ρ(c2)ρ(b) for n > 2,(p8)

ρ(c1)ρ(c2) 6= ρ(c2)ρ(c1) for n > 2,(p9)

(ρ(c1)ρ(c2)ρ(c1))2 6= Im for n > 2,(p10)

ρ(a)ρ(c1)2 6= ρ(a),(p11)

ρ(b)ρ(c1)2 6= ρ(b).(p12)

Let us recall the following property of idempotent matrix.

Lemma 9. If a matrix X with entries in a field K satisfies X2 = X, then it
is diagonalizable and all its eigenvalues are either 0 or 1.

Proof. Consider X as an endomorphism operator on a vector space V . Take
any nonzero vector u ∈ imX, then there exists v ∈ V such that Xv = u, from
the idempotency relation X2 = X we have u = Xv = XXv = Xu which yields
u 6∈ kerX, so we have V = imX ⊕ kerX, therefore X is diagonalizable. If λ is
its eigenvalue, then there exists nonzero vector v ∈ V such that λv = Xv =
X2v = Xλv = λ2v. We must have then that λ(λ− 1) = 0, and because K is a
field, this implies λ ∈ {0, 1}. �

Proof of Proposition 8. The monoid Mm(K) of m × m matrices over K can
be identified with EndK(V ), the monoid of endomorphisms of a vector space
V over K of finite dimension m. Applying Lemma 9 for X = φ(a), we can
conclude that there exists a matrix P ∈ GLm(K) such that P−1φ(a)P = Is ⊕
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0m−s, where s ∈ {0, . . . ,m}. We define a new representation by setting ρ(x) =
P−1φ(x)P for any x ∈ SSBn, and now its injectivity follows immediately from
injectivity of φ. It proves (p1) beside the cases s = 0, s = m which will be
excluded later.

From Proposition 7 we have abc1 6= ab, ac21 6= a and bc21 6= b, and together
with the relations (m1) and (m12)-(m14) we moreover have a 6= b, b 6= 1,
a 6= 1, hence from injectivity of ρ we have the cases (p2), (p3), (p6), (p11),
(p12) and remaining cases s = 0, s = m from (p1). The relations (p4) and (p5)
follow from (m14) together with (p11) and (p12) respectively. The remaining
relations (p7)-(p10) follow directly from (e4)-(e7). �

Proposition 10. If a representation ρ : SSBn → Mm(K) for n,m > 2 satis-
fies rank(ρ(a)) = 1 or rank(ρ(b)) = 1, then ρ is not faithful.

Proof. From the symmetric role of a and b in SSBn, we can assume that
rank(ρ(a)) = 1. Denote A = ρ(a), B = ρ(b) and B = (bi,j)i,j∈{1,...,m}. From
the relation (p1) of Proposition 8 we can assume that A = I1 ⊕ 0m−1, then
from AB = BA it follows that b1,2 = · · · = b1,m = 0 and b2,1 = · · · = bm,1 = 0.
This implies that AB = (b1,1)⊕ 0m−1, and combining it with B2 = B gives us
the relation AB = A that contradicts the relation (p4) of Proposition 8. �

From Proposition 8 and Proposition 10 we immediately have the following.

Corollary 11. No representation ρ : SSBn →M2(K) for n > 2 is faithful.

Example 12. A faithful representation ρ of the monoid SSB2 can be defined
(in a field of characteristic zero) as follows:

ρ(a) =

 1 0 0
0 1 0
0 0 0

 , ρ(b) =

 0 0 0
0 1 0
0 0 1

 , ρ(c1) =

 2 0 0
0 −1 0
0 0 2

 .

Theorem 13. No representation ρ : SSBn →M3(K) for n > 3 is faithful.

Proof. Assume the contrary, that ρ is faithful and denote X := ρ(x) for x ∈
{a, b, c1}. From the relations (m11) and (m13) of Prop. 5 we have B2 = B and
AB = BA. From Prop. 8 we can assume that B 6∈ {03, I3}, AB 6= A, AB 6= B,
ABC1 6= AB and that A = I2 ⊕ 01. Let B = (bi,j)i,j∈{1,2,3}. Then from the
relation AB = BA it follows that B = G⊕ (b3,3) for some matrix G ∈M2(K).
From the relation B2 = B it follows that G2 = G and b3,3 ∈ {0, 1}. If b3,3 = 0,
then AB = G ⊕ 01 = B, a contradiction, so it follows that b3,3 = 1, and
combining it with B 6= I3 gives moreover detG = 0.

Consider now C1 = (ci,j)i,j∈{1,2,3}, from the relation (m4) it follows that
C1 = F ⊕ (c3,3) for some matrix F ∈ M2(K). Non-invertability of matrix G
together with the relation ABC1 6= AB implies that G 6∈ {02, I2} and GF 6=
G, additionally from the relations (m1), (m5) and (m14) we have detF 6= 0,
GF = FG and GF 2 = G. Consider the following two main cases.
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Case (a). Assume b1,1b2,2b1,2b2,1 = 0. Then by detG = 0 we must have
that b1,2b2,1 = 0. From the symmetric role of b1,2 and b2,1, without loss of
generality, assume b1,2 = 0. Then from G2 = G and G 6∈ {02, I2} we obtain

that G is one of the two possible forms:
(

0 0
b2,1 1

)
or
(

1 0
b2,1 0

)
. From GF = FG it

follows that c1,2 = 0, and the relation GF 2 = G together with GF 6= G yields

that F is one of the two possible forms
(

c1,1 0
−b2,1(1+c1,1) −1

)
or
(

−1 0
−b2,1(1+c2,2) c2,2

)
one for each mentioned type of G respectively. Additionally from (m1) and
(p11) we have that c1,1 6= 0, c21,1 6= 1 in the first and c2,2 6= 0, c22,2 6= 1 in the
second case respectively. From (m1) and (p12) we moreover have c3,3 6= 0 and
c23,3 6= 1 in both cases.

Case (b). Assume b1,1b2,2b1,2b2,1 6= 0. Then from the relations (m1), (m4),
(m5), (m11), (m13), (m14), (p2), (p4)-(p6), (p11) and (p12) it follows that
B,C1 are in the form:

B =

(
b1,1 b1,2

(1−b1,1)b1,1
b1,2

1− b1,1

)
⊕ I1,

C1 =

( (b1,1−1)c1,2−b1,2
b1,2

c1,2
(1−b1,1)b1,1c1,2

b21,2
− b1,1c1,2b1,2

− 1

)
⊕ (c3,3),

for b1,1b1,2c1,2c3,3 6= 0, c1,2 6= −b1,2, c1,2 6= −2b1,2, b1,1 6= 1 and c23,3 6= 1.
Introducing now a matrix ρ(c2) and making simple, but tedious computa-

tions (summarized in the following Appendix) we can show that in both of the
above cases, the relations (m1), (m3), (m6), (m7), (m10), (m15), (p7), (p8)
and (p10) form a self-contradictory set. �

Appendix

Let ρ(c2) = (di,j)i,j∈{1,2,3}, we consider further subcases.
Case (a1). Assume b1,1 = 0, b2,2 = 1, c2,2 = −1 and c2,1 = −b2,1(1 + c1,1).
Consider further two cases.
Case (a1a). Assume d3,3 = 0. Consider further two cases.
Case (a1a1). Assume d3,2 = 0. From (m1) and (m3) we have d3,1 6= 0,
d1,1 = c3,3, d1,2 = 0 and d1,3 = 0, a contradiction with (m1).
Case (a1a2). Assume d3,2 6= 0. From (m1) and (m10) we have d3,1 = b2,1d3,2,
now (m3) with (m6) contradict (m1).
Case (a1b). Assume d3,3 6= 0. Consider further two cases.
Case (a1b1). Assume d3,2 = 0. From (m1), (m3) and (m10) we have d3,1 = 0,
now (m1) with (m3) yield d3,3 = c3,3. Consider further two cases.
Case (a1b1a). Assume d1,2 = 0. From (m10) we have d1,3 = 0, from (m3) it
follows that d1,1 = c1,1 and d2,2 = −1. Now (m6) with (p7) contradict (p10).
Case (a1b1b). Assume d1,2 6= 0. From (m15) we have d2,3 = 1

d1,2
(d1,3d2,2 −

c33,3d1,3) and d2,1 = 1
d1,2

( 1
c21,1

+d1,1d2,2). From (p7) we have d1,3 6= 0, now (m3)

with (m6) contradict (m15).
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Case (a1b2). Assume d3,2 6= 0. From (m6) we have d2,1 = b2,1c
2
1,1d1,1 −

b2,1d1,1−
c21,1d1,1d3,1

d3,2
− c23,3d3,1d3,3

d3,2
and d2,2 = b2,1c

2
1,1d1,2− b2,1d1,2−

c21,1d1,2d3,1
d3,2

−
c23,3d3,3. From (m3) we have d2,3 = 1

d3,2
(−b2,1c1,1d1,3d3,2 − b2,1d1,3d3,2 −

c23,3d3,3 + c3,3d
2
3,3 + c1,1d1,3d3,1). Consider further two cases.

Case (a1b2a). Assume d3,1 = 0. Form (m1) and (m7) we have d1,3 =
d1,2
d3,2

(d3,3 −
c21,1d1,1

c23,3
). From (m3) and (m10) we obtain d3,3 = −1

c3,3+1 and d1,1 =

c1,1. From (m3), (m6), (m10) and (p8) we have b2,1 = 0, c31,1 = 1 and c33,3 = 1,
a contradiction with (p10).
Case (a1b2b). Assume d3,1 6= 0. Consider further two cases.
Case (a1b2b1). Assume d1,2 = 0. From (m3) we have d1,3 = 0, d1,1 = c1,1
and d3,3 = −1

c3,3+1 . Now (m15) contradicts (p10).

Case (a1b2b2). Assume d1,2 6= 0. Form (m1), (m7) and (m10) we have

b2,1 =
d3,1
d3,2

and d1,1 = − c
2
3,3d1,3d3,2

c21,1d1,2
+

c23,3d3,3

c21,1
+

d1,2d3,1
d3,2

. From (m3) we have

d3,3 = −1
c3,3+1 , and (m15) yields c23,3 + c3,3 = −1. This together with (m10)

implies d1,3 = 0, a contradiction with (p10).
Case (a2). Assume b1,1 = 1, b2,2 = 0, c1,1 = −1 and c2,1 = −b2,1(1 + c2,2).
Consider further two cases.
Case (a2a). Assume d3,2 = 0. Consider further two cases.
Case (a2a1). Assume d1,2 = 0. From (m1) and (m3) we have d2,2 = c2,2.
Consider further two cases.
Case (a2a1a). Assume d1,3 = 0. From (m1) and (m3) we have d1,1 = −1,
d3,3 = c3,3, from (m10) we obtain d2,3 = 0. From (p7) and (m6) we obtain
c33,3 = 1, from (p8) and (m7) we obtain c32,2 = 1, a contradiction with (p10).
Case (a2a1b). Assume d1,3 6= 0. From (m3) we have d1,1 = c3,3(d3,3 + 1)

and d3,1 = − c3,3d3,3(c3,3−d3,3)
d1,3

, from (m6) we have d3,3 = −1
c3,3+1 and d1,1 =

c23,3
c3,3+1 . From (m15) we have c33,3 = 1, then from (m6) and (m10) we have

d2,1 = b2,1(−c2,2 + c3,3 + 1
c3,3+1 − 1) and d2,3 = b2,1d1,3, a contradiction with

(p8).
Case (a2a2). Assume d1,2 6= 0. From (m6) we have d3,1 = 0, and (m7) yields
d1,1 = b2,1c

2
2,2d1,2−b2,1d1,2−c22,2d2,2. From (m1) and (m3) it follows that d3,3 =

c3,3, from (m6) we have d2,3 =
c22,2d1,3d2,2−c

3
3,3d1,3

c22,2d1,2
. From (p7) we have d1,3 6= 0,

from (m6) it follows that d2,1 =
b2,1c

4
2,2d1,2d2,2−b2,1c

2
2,2d1,2d2,2−c

4
2,2d

2
2,2+c63,3

c22,2d1,2
. From

(m15) it follows that c32,2 = 1, a contradiction with (p10).
Case (a2b). Assume d3,2 6= 0. Then from (m3) we have the relations

d2,1 =
d1,1(b2,1(c2,2+1)d3,2+d3,1)−c3,3(b2,1(c2,2+1)d3,2+d3,1(d3,3+1))

c2,2d3,2
,

d2,2 =
d1,2(b2,1(c2,2+1)d3,2+d3,1)+c3,3d3,2(c2,2−d3,3)

c2,2d3,2
and

d2,3 =
d1,3(b2,1(c2,2+1)d3,2+d3,1)+c3,3d3,3(c3,3−d3,3)

c2,2d3,2
. Consider further two cases.
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Case (a2b1). Assume d3,1 = 0. Consider further two cases.
Case (a2b1a). Assume b1,2 = 0. Then (m10) implies c2,2 = 0, a contradiction
with (m1).

Case (a2b1b). Assume b1,2 6= 0. Then (m10) implies d1,3 =
b2,1d1,2d3,3+d1,1d3,3

b2,1d3,2

again from (m10) we obtain d3,2 = 0, a contradiction.
Case (a2b2). Assume d3,1 6= 0. Consider further two cases.
Case (a2b2a). Assume c2,2 = c3,3. Then (m1) and (m15) yields d1,1 =
−b2,1c22,2d1,2−b2,1c2,2d1,2+1

c2,2(c2,2+1) , later from (m10) we obtain

b2,1 =
c22,2 (−d1,3) d3,1 − c2,2d1,3d3,1 + d3,3(

c22,2 + c2,2
)
d1,3d3,2

.

Again from (m10) we obtain d3,3 = 0, a contradiction with (m1).
Case (a2b2b). Assume c2,2 6= c3,3. Then from (m6) we have

d3,3 =
(c2,2 + 1) d1,2 (b2,1d3,2 + d3,1) + c3,3c

2
2,2d3,2

(c2,2 − c3,3) c3,3d3,2
,

from (m3) we can obtain

d1,3 =
d1,2(d1,2(b2,1(c2,2+1)d3,2+(c3,3+1)d3,1)+d3,2(c2,2(c23,3+c3,3+d1,1)−c3,3d1,1−c22,2))

(c2,2−c3,3)c3,3d23,2
.

Then from (m3) we have d3,1 = −b2,1 (c2,2 + 1) d3,2. Consider further two cases.
Case (a2b2b1). Assume b1,2 = 0. Then (m10) implies c2,2 = 0, a contradic-
tion with (m1).

Case (a2b2b2). Assume b1,2 6= 0. Then (m10) implies b2,1 =
c23,3

(c2,2+1)d1,2
,

again from (m10) we have c3,3 = −1, a contradiction.
Case (b1). Assume d3,3 = 0. Consider further two cases.
Case (b1a). Assume d3,2 = 0. From (m1) we have d3,1 6= 0, from (m10) we
have d2,3 = 0 and d1,3 = 0, a contradiction with (m1).
Case (b1b). Assume d3,2 6= 0. From (m1) and (m10) we have d3,1 =
(b1,1−1)d3,2

b1,2
or d3,1 =

b1,1d3,2
b1,2

, in both of those cases (m3) contradicts (m1).

Case (b2). Assume d3,3 6= 0. From (m10) we have d2,1 =
(b1,1−1)d2,2

b1,2
,

d3,2 =
b1,2d3,1
b1,1

and d2,3 = 0. From (m1) we have d2,2 6= 0 then (m6) yields

d1,3 = 0, the relation (p7) yields d3,1 6= 0, and (m3) yields d3,3 = c3,3. Now
(m3) with (m6) contradict (p10).
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