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ON HODGE STRUCTURES OF QUASITORIC ORBIFOLDS

Saibal Ganguli

Abstract. We give Hodge structures on quasitoric orbifolds. We define
orbifold Hodge numbers and show a correspondence of orbifold Hodge
numbers for crepant resolutions of quasitoric orbifolds. In short we extend
Hodge structures to a non almost complex setting.

1. Introduction

The purpose of this paper is to provide an example of Hodge structures in a
non almost complex setting. First we provide a canonical Hodge structure to
quasitoric orbifolds. We compute Hodge numbers. Then as an application we
define orbifold Hodge numbers and establish a correspondence of these numbers
for crepant resolutions.

Physicists believe that orbifold string theory is equivalent to ordinary string
theory of certain desingularizations. This belief motivated a body of conjec-
tures, collectively referred to as the orbifold string theory conjecture.

A partial crepant resolution ρ : Y → X of a singular variety X is a partial
resolution of singularities such that ρ∗(KX) = KY , i.e., the canonical class of X
pulls back to the canonical class of Y under ρ. In this paper we are interested
in the orbifold Hodge number conjecture which states that for every bi-degree
(p, q), the (p, q)-th orbifold Hodge numbers of a Gorenstein (also known as SL)
algebraic orbifold X and its partial crepant resolution Y are equal. Note that
when Y is smooth, the (p, q)-th orbifold Hodge number of Y is the same as the
ordinary (p, q)-th Hodge number of Y .

In the case of complex algebraic orbifolds with certain stratifications and
having Gorenstein toroidal singularities, Batyrev and Dais in [2] proved the
correspondence for string theoretic Hodge numbers. In case of algebraic qu-
asitoric orbifolds (our case meeting the above criteria) string theoretic Hodge
numbers are same as orbifold Hodge numbers and so the above correspondence
follows.
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Poddar and Lupercio in [11] proved Mckay-Ruan correspondence for com-
plete K-equivalent algebraic Gorenstein orbifolds. This means if the canonical
bundles of orbifolds X and Y are related in a prescribed manner resulting in
a slightly more general condition than crepancy, their orbifold Hodge numbers
and orbifold Hodge structures coincide. Yasuda in [16] and [17] has proved
independently the orbifold Hodge structure and orbifold Hodge number cor-
respondence for both Gorenstein and non-Gorenstein K-equivalent complete
complex algebraic orbifolds.

We generalize the orbifold Hodge number correspondence to a non-algebraic,
non-analytic setting. In a nutshell the main contributions of our paper are

(1) Providing canonical Hodge structures to quasitoric orbifolds in Theo-
rems 4.4 and 4.7.

(2) As an application to (1) we prove the orbifold Hodge number corre-
spondence of a crepant resolution of quasitoric quasi-SL orbifolds in
Theorem 5.3 and Corollary 5.4.

A quasitoric orbifold X of dimension 2n is a compact differentiable orbifold
equipped with a smooth action of the n-dimensional compact torus such that
the orbit space is diffeomorphic as manifold with corners to an n-dimensional
simple polytope P . An n-dimensional polytope is called simple if every vertex
is the intersection of exactly n codimension one faces. Every facet (codimen-
sion one face) F of P corresponds to a torus invariant quasitoric suborbifold
X(F ) of real codimension 2, which is stabilized by a circle subgroup of the form
{(e2πia1t, . . . , e2πiant) : t ∈ R}. The vector (a1, . . . , an) is a primitive integral
vector. It is uniquely determined if an orientation or an almost complex struc-
ture on the normal bundle of X(F ), compatible with the isotropy circle action,
is specified. We call (a1, . . . , an) the characteristic vector and X(F ) the char-
acteristic suborbifold associated to F . More generally, a codimension k face is
the intersection of k codimension one faces and its characteristic set consists
of the characteristic vectors of these codimension one faces. The characteristic
set of every face is linearly independent over R.

Quasitoric manifolds (and orbifolds, although not in full generality,) were
introduced in [6]. They got their present name in [3]. They are generalizations
of smooth projective toric varieties. They include manifolds such as CP 2♯CP 2

which do not admit an almost complex structure. A broader class of quasitoric
orbifolds were defined in [15]. In that paper and the subsequent papers [8] and
[9], questions relating to homology, cohomology, almost complex structures and
equivariant blowdown maps were addressed. McKay correspondence of Betti
numbers of Chen-Ruan cohomology was also established in [7].

Quasitoric orbifolds includes many orbifolds which are neither complex nor
almost complex. In this paper we address the question of Hodge structures
of these orbifolds. Since CP 2♯CP 2 is a quasitoric orbifold it gets a Hodge
structure in spite of being non complex. This opens the possibility of Dolbeault-
like theory for non-complex, but almost complex quasitorics. The idea of the
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proof is to relate the cohomology of a quasitoric orbifold with the cohomology
of a projective toric orbifold which is a Kahler orbifold. The complex De Rham
cohomology of the two spaces are shown to be isomorphic as a graded vector
space and so the Hodge structure of one can be pulled back to the other.

Since we have Hodge structures we can define orbifold Hodge numbers and
get a correspondence for these numbers under crepant blowdown by imitating
Batyrev-Dias correspondence.

A general quasitoric orbifold differs combinatorially from a projective toric
orbifold in the following manner. In the case of a projective toric orbifold, the
characteristic vector of a codimension one face of the orbit polytope is normal
to that face. This enables the characteristic vectors to generate cones that fit
together to form a toric fan. In a general quasitoric orbifold the normality
condition is relaxed to linear independence of characteristic sets of faces.

The paper is organized in the following manner. In Section 2 we give a
combinatorial construction of quasitoric orbifolds. In Section 3 we discuss Betti
numbers of quasitoric orbifolds. In Section 4 we define Hodge structures and
provide a canonical Hodge structure by showing cohomological vector space
isomorphism between a quasitoric and a projective toric. In Section 5 as an
application, we define and show orbifold Hodge number correspondence.

2. Quasitoric orbifolds

In this section we describe the combinatorial construction of quasitoric orb-
ifolds. Notations established in this section will be used later. This material
can also be found in [9].

Take a copy N of Zn and form a torus TN := (N ⊗Z R)/N ∼= R
n/N .

Take a submodule M of N of rank m and construct the torus TM := (M ⊗Z

R)/M of dimension m. Define the map ζM : TM → TN the obvious map
generated by the inclusion map M → N .

Definition 2.1. We define the image of TM under the map ζM as T (M). IfM
is a sub-module of rank 1 and λ is the generator, then we call the image T (λ).

Definition 2.2. A polytope P is a subset of R
n which is diffeomorphic as

manifolds with corners to a convex hull C of a finite number of points in R
n.

The faces of P are images of faces of C.

Definition 2.3. A simple polytope is a polytope where each vertex is an
intersection of n co-dimension one faces which are in general position.

Definition 2.4. Codimension one faces of a polytope P are called facets. In
a simple polytope every k dimensional face is an intersection of n − k facets.
We call F = {F1, F2, . . . , FM} the set of facets of the simple polytope P .

Definition 2.5. We define a map Λ : F → Z
n where Fi is mapped to Λ(Fi) and

if Fi1 · · ·Fik intersect to form a face of the polytope P , then the corresponding
Λ(Fi1) · · ·Λ(Fik) are linearly independent. From now onwards we call Λ(Fi) as
λi and call it a characteristic vector and Λ the characteristic function.
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Remark 2.1. In this article we consider only primitive characteristic vectors and
call the corresponding quasitoric orbifolds as primitive quasitoric orbifolds. The
codimension of the singular locus of these orbifolds is at least 4.

Definition 2.6. For a face F define I(F ) = {i : F ⊂ Fi, Fi ∈ F}. The set
ΛF = {λi : i ∈ I(F )} is called the characteristic set of F . We call N(F ) be the
sub module generated ΛF . If I(F ) is empty, N(F ) = 0.

For any point p in the polytope we denote F (p) the face whose relative
interior contains p. We define an equivalence relation in P ×TN where (p, t1) ∼
(q, t2) if p = q and t2

−1t1 ∈ T (N(F (p)) where N(F (p)) is the sub module of
N generated by integral linear combinations of vectors of ΛF (p). The quotient
space X = P × TN/ ∼ has a structure of an 2n dimensional orbifold and are
called quasitoric orbifolds.

The pair (P,Λ) is a model for the above space. If vectors comprising ΛF

are unimodular for all faces F we get a quasitoric manifold. The TN action
on P × TN induces a torus action on the quotient space X , of the equivalence
relation, and quotient of this action is the polytope P . Let us denote the
quotient map by π : X → P . π−1(w) for a vertex w of P is a fixed point of the
above action and we will denote it by w without confusion.

2.1. Orbifold structure

For every vertex w in P consider open set Uw of P the complement of all
faces not containing the vertex w. We define

(2.1) Xw = π−1(Uw) = Uw × TN/ ∼ .

For any face F containing the vertex w there is a natural inclusion of N(F )
in N(w) and TN(F ) in TN(w). We define another equivalence relation ∼w on
Uw × TN(w) as follows.

For p ∈ Uw, let F be the face which contains p in its relative interior, by
definition F contains w. We define the relation as (p, t1) ∼w (q, t2), if p = q
and t2

−1t1 ∈ TN(F ). We define

(2.2) X̃w = Uw × TN(w)/ ∼w .

The above space is equivariantly diffeomorphic to an open set in Cn with the
standard torus action on Cnand TN(w) action on X̃w. The diffeomorphism will
be clear from the subsequent discussion. The map ζN(w) : TN(w) → TN induces

a map from ζw : X̃w → Xw in the following way

(2.3) ζw((p, t) ∼w) = (p, ζN(w)(t)) ∼ .

The kernel of the map ζN(w) is Gw = N/N(w) a subgroup of TN(w) and has a

smooth action on X̃w and the quotient of this action is Xw. This action is not
free and so Xw is an orbifold and the uniformizing chart of Xw is (X̃w, Gw, ζw).

We define a homeomorphism φ(w) : X̃w → R
2n as follows. Assume without

loss of generality F1, F2, . . . , Fn are the facets containing w and pi(w) = 0 is
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the facet Fi and in Uw p,is have non-negative values with positive in interiors
of Uw. Let Λw be the corresponding set of characteristic vectors represented
as follows

(2.4) Λw = [λ1 · · ·λn].

If q(w) be the representation of the angular coordinates of TN in the basis with
respect to λ1 · · ·λn of N ⊗Z R. Then the standard coordinates q are related in
the following manner to q(w)

(2.5) q = Λwq(w).

The homeomorphism φ(w) : X̃w → R
2n is

(2.6) xi = xi(w) :=
√

pi(w) cos(2πqi(w)), yi = yi(w) :=
√

pi(w) sin(2πqi(w))

for i = 1, . . . , n. We write

(2.7) zi = xi +
√
−1yi, and zi(w) = xi(w) +

√
−1yi(w).

Now consider the action of Gw = N/N(w) on ˜Xw. An element g of Gw is
represented by a vector

∑n
i=1 aiλi in N where each ai ∈ Q. The action of g

transforms the coordinates qi(w) to qi(w) + ai. Therefore

(2.8) g · (z1, . . . , zn) = (e2π
√
−1a1z1, . . . , e

2π
√
−1anzn).

We define

(2.9) GF := ((N(F )⊗Z Q) ∩N)/N(F ).

We denote the space X with the above orbifold structure by X.

2.2. Invariant suborbifolds

The TN invariant subset π−1(F ) where F is a face of P is a quasitoric
orbifold. The face F acts as the polytope of X(F) and the characteristic vec-

tors are obtained by projecting characteristic vectors of X to N/ ˜N(F ) where
˜N(F ) = N(F )⊗Z Q∩N . With this structure X(F) is a suborbifold of X. The

suborbifolds corresponding to the facets are called characteristic suborbifolds.
We denote the interior of a face by F ◦. The interior of a vertex w◦ is w.

2.3. Orientation

Quasitoric orbifolds are oriented. For more detailed discussion see Section
2.8 of [9]. A choice of orientation of TN and a choice of orientation of the
polytope P induces an orientation of the quasitoric orbifold X.
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2.4. Omniorientation

A choice of orientations of the normal bundles of the orbifolds corresponding
to the facets (which we named as characteristic suborbifolds) is termed as fixing
an omniorientation. This is equivalent to fixing the sign of the characteristic
vector associated to the facet (note: we call co-dimension one faces as facets).
A quasitoric orbifold with a fixed omniorientation is called an omnioriented

quasitoric orbifold. A quasitoric orbifold is positively omnioriented if it has an
omniorientation such that for every vertex w, Λw has a positive determinant.
For more detailed discussion see Section 2.9 of [9].

3. Betti numbers of a quasitoric orbifold

Poddar and Sarkar computed the Q homology and cohomology of quasitoric
orbifolds in [15]. In particular the computation of homology in Section 4 of [15]
gives a strong connection between the combinatorics of the polytope P and the
Betti numbers. We discuss the connection in following proposition.

Proposition 3.1. Quasitoric orbifolds with combinatorially equivalent poly-

topes have same Betti numbers.

Proof. A brief discussion of the homology computation in [15] is required to
establish the above proposition. The computation depends on defining a con-
tinuous height function on the polytope P with following properties.

(1) Distinguishes vertices.
(2) Strictly increases or decreases on edges.
(3) Each face has a unique maximum and minimum vertex.
(4) The maximum vertex is the unique vertex of the face where all the

edges of the face meeting the vertex has a maximum on the vertex.
(5) The minimum vertex is the unique vertex of the face where all the

edges of the face meeting the vertex has a minimum on the vertex.

A vertex distinguishing linear functional of Rn does the job. Here we assume
P is embedded in R

n. Once we have such a function we orient the edges of the
polytope in increasing direction of the height function and arrange the vertices
in increasing order of height. We define index iw of a vertex w as the number
of incoming edges. The smallest face containing these incoming edges is the
largest face Fw which has w as the maximum vertex. Now start attaching 2iw
q-cells following the increasing order of vertices. The q-cell covers the entire
inverse image of Fw in the orbifold. For definition and description of q-cells
and the attaching maps we ask the reader to consult [15].

Now each face has a unique maximum vertex w and interior of the face will
be contained in Fw by points 3 and 4 above. So each face gets covered and
each point in the orbifold is in the interior of exactly one q-cell. Considering
the polytope as a face there will be exactly one 0 q-cell and one 2n q-cell. Thus
we get a q cellular decomposition of the quasitoric orbifold.
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Now it is shown in [15] that the 2k Betti numbers depends on the number
of vertices with index k while the odd Betti numbers are zero. Now if we have
two quasitoric orbifolds with two combinatorially equivalent polytopes (which
means they are diffeomorphic as manifold with corners) the height function
of one composed with the diffeomorphism gives a height function of the other
with identical vertex indices. Thus their Betti numbers will be same by what
is done in [15]. �

Corollary 3.2. The dimension of each degree of singular cohomology with

coefficients in Q, R and C of quasitoric orbifolds X and X
′

with combinatorially

equivalent polytopes are same.

Proof. By Universal Coefficient Theorem, Corollary 3.2 follows. �

Corollary 3.3. The dimension of each degree of singular cohomology with

coefficients in Q, R and C of a quasitoric orbifold X is identical with a projective

toric orbifold X
′

.

Proof. Take a quasitoric orbifold X. A slight perturbation makes the polytope
P associated with the orbifold into a rational polytope (see Section 5.1.3 in [3])
without changing its combinatorial class, and with suitable dilations makes it
into an integral polytope P

′

which is combinatorially equivalent to P . Now
from P

′

taking normal fan we get a projective toric orbifold X ′ (the analytic
structure determines the orbifold structure so we do not use the bold nota-
tion) with polytope P

′

. Since polytope P and polytope P
′

are combinatorially
equivalent by (3.2) the above holds. �

Corollary 3.4. Each degree of the cohomologies of the two spaces X and X
′

are isomorphic.

Proof. Since the combinatorial equivalence map defines a map between the q-
cells and since the homology and cohomology depends on q-cells of a given
dimension we get vector space isomorphisms Jk of kth degree cohomology of
the two spaces. �

4. Hodge structure

Definition 4.1. A pure Hodge structure of weight n consists of an Abelian
group HK and a decomposition of its complexification into complex subspaces
Hp,q where p+ q = n with the property conjugate of Hp,q is Hq,p.

(4.1) HC = HK ⊗Z C =
⊕

p+q=n

Hp,q

and

(4.2) Hp,q = Hq,p.
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Definition 4.2. By a Hodge structure on a compact space we mean the sin-
gular cohomology group of degree k has a pure Hodge structure of weight k for
all k.

Proposition 4.1. Kahler compact orbifolds have a canonical Hodge structure.

Proof. By Baily’s Hodge decomposition see [1], Proposition 4.1 follows. �

Proposition 4.2. Projective toric orbifolds coming from integral simple poly-

topes are Kahler.

Proof. By Theorems 8.1, 9.1 and 9.2 in [10], Proposition 4.2 follows. �

Corollary 4.3. Projective toric orbifolds coming from integral simple polytopes

have a canonical Hodge structure.

Definition 4.3. Let Hp,q be the (p, q) Hodge component of the canonical

Hodge structure on Projective toric orbifolds X
′

coming from integral simple
polytopes. We define

(4.3) Hp,q(X
′

) = Hp,q

and

(4.4) hp,q(X
′

) = dim(Hp,q(X
′

)).

Let X be a quasitoric orbifold and X
′

be the projective toric orbifold whose
integral simple polytope P

′

is combinatorially equivalent to the polytope P of
X. We assign

(4.5) Hp,q(X) = Jk(H
p,q(X

′

)),

where p + q = k and Jk is the isomorphisms of the degree k cohomologies
defined in (3.4).

Theorem 4.4. The above assignment defines a Hodge structure on X depend-

ing on Jk. For independence of Jk see Theorem 4.7.

Proof. By Corollary 3.3, Theorem 4.4 follows. �

Theorem 4.5. The Hodge numbers hp,q does not depend on X
′

.

Proof. To show the above we must understand the E-polynomial. Let Y be
an algebraic variety over C which is not necessarily compact or smooth. De-
note by hp,q(Hk

c (Y )) the dimension of the (p, q) Hodge component of the k-th
cohomology with compact supports. This is a generalization of the Hodge
structures discussed on the above class of compact projective toric orbifolds
and are called mixed Hodge structures. For more detailed discussion we ask
the reader to consult [12].

We define

(4.6) ep,q(Y ) = Σk≥0(−1)khp,q(Hk
c (Y )).
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The polynomial

(4.7) E(Y ;u, v) := Σp,qe
p,q(Y )upvq

is called E-polynomial of Y . When we have a pure Hodge structure like the
above class of compact projective toric orbifold X

′

,

(4.8) ep,q(X
′

) = (−1)p+qhp,q(X
′

).

Now if we have a stratification of an algebraic variety Y by disjoint locally
closed sub-varieties Yi (i.e., Yi ⊂ Y and Y = ∪iYi) by Proposition 3.4 of [2]

(4.9) E(Y ;u, v) = ΣiE(Yi;u, v).

Now in a projective toric orbifold coming from a integral simple polytope as in
our case we have a stratification by algebraic tori corresponding to the interior
of each face. Let X

′

be the concerned orbifold and Fi be a k dimensional face
of the corresponding polytope then π−1(F ◦

i ) is a k dimensional algebraic tori

which we denote X
′

i . So by (4.9) we have

(4.10) E(X
′

;u, v) = ΣiE(X
′

i ;u, v).

Here i runs over all the faces. Now if we have two projective toric orbifolds
X

′

and X
′′

both having combiantorially equivalent polytopes with that of X
by (4.10) we claim they have the same E-polynomial. This is because since
they have combinatorially equivalent polytopes, number of faces of a given
dimension will be same for each polytope. So the sum on the right hand side
of (4.10) can be partitioned into E-polynomial of k dimensional algebraic tori
with a multiplicity of number of faces of dimension k, where k runs from 0 to
dimension of the polytopes. Since same dimensional algebraic tori have same
E-polynomial the above claim holds.

Thus the Hodge numbers of the two projective toric orbifolds will be same
by (4.8). So the theorem holds. �

Theorem 4.6. The Hodge numbers of a quasitoric orbifold are as follows

hp,q(X) = 0 if p 6= q and hp,p(X) = dim(H2p(X,C)).

Proof. We show this for projective toric orbifolds coming from integral simple
polytope. We know that the E-polynomial of a k-dimensional algebraic torus
is (uv − 1)k. Since by (4.10) the E-polynomial of the projective toric orbifold
decomposes into sum of E-polynomial of algebraic tori and since E-polynomial
of the algebraic tori have only terms of the form (uv)l, implies that coefficient
of upvq is zero if p 6= q in the E-polynomial of the projective toric orbifold.
Since these projective toric orbifolds have a pure Hodge structure the claim of
the theorem is true. �

Theorem 4.7. The above Hodge structure does not depend on Jk and is canon-

ical.

Proof. Since there is only one non-zero Hodge number for a given degree of
cohomology, we can define the same Hodge decomposition on Jk. �
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Remark 4.8. The above proof of Hodge numbers of quasitoric orbifolds is also
a proof for Hodge numbers of projective toric orbifolds coming from Deligne’s
mixed hodge structures. We have not seen this proof in literature before.

4.1. Example

We compute the Hodge structure for CP 2♯CP 2 which does not have an
almost complex structure. We take a projective toric orbifold X

′

with a com-
binatorially equivalent polytope P

′

. Since the polytope of P is a four sided
polygon (see Example 1.19 [6]) it will have four vertices, four edges and one
2-face.

(4.11) E(X
′

;u, v) = (uv − 1)2 + 4(uv − 1) + 4.

(4.12) E(X
′

;u, v) = u2v2 + 2uv + 1.

This tallies with the cohomology of CP 2♯CP 2 and so we have the decomposition
h2,2 = 1, h1,1 = 2 and h0,0 = 1.

5. An application–orbifold Hodge numbers and a correspondence

5.1. Orbifold Hodge numbers

Orbifold Hodge numbers for closed global quotient orbifold was defined in
[18] and [2] and for Kahler orbifolds in [14]. They are the dimensions of the
Dolbeaut orbifold cohomology (see [14, Section 2.2]). They depend on the
twisted sectors of the orbifold. The twisted sector for toric variety was com-
puted in [13]. The determination of twisted sectors of quasitoric orbifolds are
similar in essence. Let X be an omnioriented quasitoric orbifold (i.e., the signs
of characteristic vectors are fixed). Consider an element g belonging to the
group GF defined in equation (2.9). Then g may be represented by the vec-
tor

∑

j∈I(F ) ajλj where aj is restricted to [0, 1) ∩ Q and λj belongs to the

characteristic set of F . We define the degree shifting number or age as

(5.1) ι(g) =
∑

aj .

For faces F and H of P we write F ≤ H if F is a sub-face of H , and F < H
if it is a proper sub-face. If F ≤ H we have a natural inclusion of GH into GF

induced by the inclusion of N(H) into N(F ). Therefore we may regard GH as
a subgroup of GF . Define the set

(5.2) G◦
F = GF −

⋃

F<H

GH .

Note that G◦
F = {

∑

j∈I(F ) ajλj | 0 < aj < 1} ∩N , and G◦
P = GP = {0}.

Definition 5.1. We define the orbifold Dolbeault cohomology groups of an
omnioriented quasitoric orbifold X to be

Hp,q
orb(X) =

⊕

F≤P

⊕

g∈G◦

F

Hp−ι(g),q−ι(g)(X(F )).
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Here Hp−ι(g),q−ι(g)(X(F )) refers to the components of the Hodge structures
defined above ,when X(F ) is considered as a quasitoric orbifold X(F ). The
pairs (X(F ), g) where F < P and g ∈ G◦

F are called twisted sectors of X. The
pair (X(P ), 1), i.e., the underlying space X , is called the untwisted sector.

Definition 5.2. We define orbifold Hodge numbers as

hp,qorb(X) = dim(Hp,q
orb(X)).

Now we introduce some notation. Consider a co-dimension k face F =
F1 ∩ · · · ∩ Fk of P where k ≥ 1. Define a k-dimensional cone CF in N ⊗ R as
follows,

(5.3) CF =







k
∑

j=1

ajλj : aj ≥ 0







.

The group GF can be identified with the subset BoxF of CF , where

(5.4) BoxF :=







k
∑

j=1

ajλj : 0 ≤ aj < 1







∩N.

Consequently the set G◦
F is identified with the subset

(5.5) Box◦F :=







k
∑

j=1

ajλj : 0 < aj < 1







∩N

of the interior of CF . We define BoxP = Box◦P = {0}.
Suppose w = F1 ∩ · · · ∩ Fn is a vertex of P . Then Boxw =

⊔

w≤F Box
◦
F .

This implies

(5.6) Gw =
⊔

w∈F

G◦
F .

An almost complex orbifold is SL if the linearization of each g is in SL(n,C).
This is equivalent to ι(g) being integral for every twisted sector. Therefore, to
suit our purposes, we make the following definition.

Definition 5.3. An omnioriented quasitoric orbifold is said to be quasi-SL if
the age of every twisted sector is an integer.

5.2. Blowdowns

In order to get a blow up along a face we replace the face by a facet with a
new characteristic vector. Suppose F is a face of P . We choose a hyperplane

H = {p̂0 = 0} such that p̂0 is negative on F and ̂P := {p̂0 > 0}∩P is a simple
polytope having one more facet than P . Suppose F1, . . . , Fm are the facets of

P . Denote the facets Fi ∩ ̂P by Fi without confusion. Denote the extra facet
H ∩ P by F0.
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Without loss of generality let F =
⋂k

j=1 Fj . Suppose there exists a primitive
vector λ0 ∈ N such that

(5.7) λ0 =

k
∑

j=1

bjλj , bj > 0 ∀ j.

Then the assignment F0 7→ λ0 extends the characteristic function of P to a

characteristic function ̂Λ on ̂P . Denote the omnioriented quasitoric orbifold

derived from the model ( ̂P , ̂Λ) by Y.

Definition 5.4. We define blowdown a map Y 7→ X which is inverse of a
blow-up. Such maps have been constructed in [9].

Lemma 5.1 ([9, Lemma 4.2]). If X is positively omnioriented, then so is a

blowup Y.

Definition 5.5. A blowdown or blow up is called crepant if
∑

bj = 1.

Lemma 5.2 ([9, Lemma 8.2]). The crepant blowup of a quasi-SL quasitoric

orbifold is quasi-SL.

5.3. Correspondence of orbifold Hodge numbers

The statement of the theorem we are going to prove is as follows

Theorem 5.3. For crepant blowdowns (or blowups) orbifold Hodge numbers

of quasi-SL quasitoric orbifolds do not change.

Corollary 5.4. For crepant resolution orbifold Hodge numbers of quasi-SL
quasitoric orbifolds do not change.

We admit the proof is similar to the proof of Mckay Correspondence of
Betti- numbers of Chen-Ruan cohomology in the author’s previous paper [7]
and motivated by Strong Mckay correspondence proof [2], but still we give a
detailed argument for the convenience of the reader.

5.4. Singularity and lattice polyhedron

Following the discussion in Section 5.1, a singularity of a face F is defined by
a cone CF formed by positive linear combinations of vectors in its characteristic
set λ1, . . . , λd where d is the co-dimension of the face in the polytope. The ele-

ments of the local group GF are of the form g = diag(e2π
√
−1α1 , . . . , e2π

√
−1αd),

where
∑d

i=1 αiλi ∈ N , and 0 ≤ αi < 1. Recall that the age

(5.8) ι(g) = α1 + · · ·+ αd

is integral in quasi-SL case by Definition 5.3.
The singularity along the normal bundle of the sub-orbifold corresponding to

interior of F is of the form C
d/GF . These singularities are same as Gorenstein

toric quotient singularities in complex algebraic geometry. This means they are
toric (coming from a cone) SL orbifold singularity (SL means linearization of
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a group element is SL,which in our case implies ι(g) is integral). Now let Nw

be the lattice formed by {λ1, . . . , λn}, the characteristic vectors at a vertex w
contained in the face F . Let mw be the element in the dual lattice of Nw such
that its evaluation on each λi is one. Now from Lemma 9.2 of [5] we know that
the cone Cw contains an integral basis, say e1, . . . , en. Suppose ei =

∑

aijλj .
By (5.4) ei corresponds to an element of Gw, and since the singularity is qausi-
SL,

∑

aij is integral. Hence mw evaluated on each ej is integral. So mw an
element of the dual of the integral lattice N .

Consider the (n − 1)-dimensional lattice polyhedron ∆w defined as {x ∈
Cw | 〈x,mw〉 = 1}. Note that ∆w = {

∑n
i=1 aiλi | ai ≥ 0,

∑

ai = 1}. For
any face F containing w we define ∆F = ∆w ∩ CF . If {λi, . . . , λd} denote the

characteristic set of F , then ∆F = {
∑d

i=1 aiλi | ai ≥ 0,
∑

ai = 1}. Hence ∆F

is independent of the choice of w.

Remark 5.5. An element g ∈ G of an SL orbifold singularity can be diago-

nalized to the form g= diag(e2π
√
−1α1 , . . . , e2π

√
−1αd), where 0 ≤ αi < 1 and

ι(g) = α1 + · · ·+ αd is integral.

We make some definitions following [2].

Definition 5.6. Let G be a finite subgroup of SL(d,C). Denote by ψi(G) the
number of the conjugacy classes of G having ι(g) = i. Define

(5.9) W (G;uv) = ψ0(G) + ψ1(G)uv + · · ·+ ψd−1(G)(uv)
d−1

.

Definition 5.7. We define height(g) = rank(g − I).

Definition 5.8. Let G be a finite subgroup of SL(d,C). Denote by ψ̃i(G) the
number of the conjugacy classes of G having the height(g) = d and ι(g) = i.
Define

(5.10) ˜W (G;uv) = ψ̃0(G) + ψ̃1(G)uv + · · ·+ ψ̃d−1(G)(uv)
d−1.

Definition 5.9. For a lattice polyhedron ∆F defining a SL singularity C
d/GF ,

we define the following:

(5.11) W (∆F ;uv) =W (GF ;uv).

(5.12) ψi(∆F ) = ψi(GF ).

(5.13) ˜W (∆F ;uv) = ˜W (GF ;uv).

(5.14) ψ̃i(∆F ) = ψ̃i(GF ).

5.5. E-polynomial for quastiotoric orbifold

Definition 5.10. We define the E-polynomial of a quasitoric orbifold X as
follows

(5.15) Equas(X : u, v) = Σp,q(−1)p+qhp,q(X)upvq.
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If Xi is the stratification of the quasitoric orbifold by inverse image of the
quotient map on interior of faces Fi. Here i runs over all the faces.

Theorem 5.6.

(5.16) Equas(X : u, v) = ΣiE(Xi : u, v).

Proof. Let X
′

be a projective toric orbifold whose Hodge structure has been
pulled backed to X. The by [2, Proposition 3.4] we have

(5.17) Equas(X : u, v) = E(X
′

: u, v) = ΣiE(X
′

i : u, v).

Where is X ′
i is stratification by inverse images of interiors of faces of the poly-

tope of X
′

. Since the two orbifolds have combinatorially equivalent polytopes
number of faces of a given dimension is same. And since the stratas are alge-
braic tori of dimension equal to its corresponding face, we can replace X ′

i by
the corresponding Xi in the right hand most sum. The identification of X ′

i

with Xi is by the combinatorial equivalence map. �

Definition 5.11. We define

(5.18) Eorb(X : u, v) = Σp,q(−1)p+qhp,qorb(X)upvq.

From the above discussions and since each GF is Abelian, it is easy to prove

(5.19) Eorb(X : u, v) = ΣiEquas(Xi : u, v)˜W (∆Fi
, uv).

The following can also be seen from what has been discussed in the previous
subsection

(5.20) W (∆Fi
, uv) = ΣXj≥Xi

˜W (∆Fj
, uv),

(5.21) Eorb(X : u, v) = ΣiE(Xi, u, v)W (∆Fi
, uv),

where Xj ≥ Xi means Xi ⊂ Xj and X is a quasi-SL quasitoric orbifold.
We generalize Est defined in [2, 6.7] to quasitorics as it has similar stratifi-

cation in to Xi’s

(5.22) Est(X : u, v) = ΣiE(Xi, u, v)W (∆Fi
, uv).

Comparing our Eorb with their Est we have

(5.23) Est(X : u, v) = Eorb(X : u, v).

5.6. Proof of the main theorem

We state the theorem again for the reader’s convenience.

Theorem 5.7. For crepant blowdowns (or blowups) orbifold Hodge numbers

of quasi-SL quasitoric orbifold do not change.
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Proof. Let ρ : X̂ → X be a crepant blowdown of omnioriented quasi-SL qua-
sitoric orbifolds. We set X̂i := ρ−1(Xi). Then X̂i has a natural stratification
it is enough to prove

(5.24) Est(X̂) = Est(X).

But since quasi-SL quasitoric orbifold have Gorenstein torodial singularity de-
fined in [2] and a blow up effects only singularity cone of the face which is
blowed up and neighboring cones, where things are toric and since no global
patching is required, the proof of Batyrev-Dias can be imitated here (see [2,
Theorem 6.2]). �
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