DOI QR코드

DOI QR Code

Hydrazine Cross-linking in PAN Films in a Reaction Medium of Aqueous DMF Solution

DMF 수용액 매개체에서 PAN 필름의 히드라진 가교 반응

  • Park, Heung Su (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Mun, Seon Yeong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 박흥수 (숭실대학교 유기신소재.파이버공학과) ;
  • 문선영 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2017.02.28
  • Accepted : 2017.04.12
  • Published : 2017.04.30

Abstract

The introduction of cross-linking into polyacrylonitrile (PAN) films with hydrazine solutions in a reaction medium of various concentrations of aqueous N,N'-dimethylformamide (DMF) solution was studied. The effect of the DMF concentration in the reaction medium, hydrazine concentration, reaction temperature, and time on the hydrazine addon and the degree of DMF swelling was investigated. The swelling in the DMF decreased with an increase in the hydrazine add-on, indicating that the modified PAN films became insoluble and swollen in the DMF. Although all the reaction conditions affected the hydrazine add-on, a high temperature of $110^{\circ}C$ in a 60 % (v/v) aqueous DMF solution with a 6 % (w/v) hydrazine solution resulted in more effective cross-linking at the same hydrazine add-on values. Analysis of the FTIR and UV-Visible spectra confirmed the introduction of the hydrazine cross-linking. The crystallinity of the modified PAN film reduced with increasing hydrazine cross-linking.

Keywords

Acknowledgement

Supported by : 산업통상자원부

References

  1. G. Henrici-Olive and S. Olive "Molecular Interactions and Macroscopic Properties of Polyacrylonitrile and Model Substances", in "Chemistry Series Vol. 32: Advances in Polymer Sciences", Springer, Berlin, 1979, pp.123-152.
  2. J. C. Masson, Ed., "Acrylic Fibers Technology and Applications", Marcel Dekker, Inc., N.Y., 1995, pp.37-67.
  3. E. Battistel, M. Morra, and M. Marinetti, "Enzymatic Surface Modification of Acrylonitrile Fibers", Appl. Surf. Sci., 2001, 177, 32-41. https://doi.org/10.1016/S0169-4332(01)00193-3
  4. H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang, C. J. B. White, and L. Zhu, "Surface Modification of Electrospun Polyacrylonitrile Nanofiber Towards Developing an Affinity Membrane for Bromelain Adsorption", Desalination, 2010, 256, 141-147. https://doi.org/10.1016/j.desal.2010.01.026
  5. M. L. Gupta, B. Gupta, W. Oppermann, and G. Hardtmann, "Surface Modification of Polyacrylonitrile Staple Fibers via Alkaline Hydrolysis for Superabsorbent Applications", J. Appl. Polym. Sci., 2004, 91, 3127-3133. https://doi.org/10.1002/app.13486
  6. S. Jain, S. Chattopadhyay, R. Jackeray, and H. Singh, "Surface Modification of Polyacrylonitrile Fiber for Immobilization of Antibodies and Detection of Analyte", Anal Chim Acta, 2009, 654, 103-110. https://doi.org/10.1016/j.aca.2009.08.030
  7. I. Vega, W. Morris, and N. D'Accorso, "PAN Chemical Modification: Synthesis and Characterization of Terpolymers with 1,2,4-Oxadiazolic Pendant Groups", React. Func. Polym., 2006, 66, 1609-1618. https://doi.org/10.1016/j.reactfunctpolym.2006.06.004
  8. K. Saeed, S. Haider, T. J. Oh, and S. Y. Park, "Preparation of Amidoxime-Modified Polyacrylonitrile (PAN-oxime) Nanofibers and Their Applications to Metal Ions Adsorption", J. Memb. Sci., 2008, 322, 400-405. https://doi.org/10.1016/j.memsci.2008.05.062
  9. Q. Ouyang, L. Cheng, H. Wang, and K. Li, "Mechanism and Kinetics of the Stabilization Reactions of Itaconic Acid- Modified Polyacrylonitrile", Polym. Degrad. Stabil., 2008, 93, 1415-1421. https://doi.org/10.1016/j.polymdegradstab.2008.05.021
  10. S. Deng and R. B. Bai, "Aminated Polyacrylonitrile Fibers for Humic Acid Adsorption : Behaviors and Mechanisms", Envir. Sci. Tech., 2003, 37, 5799-5805. https://doi.org/10.1021/es034399d
  11. A. M. Shoushtari, M. Zargaran, and M. Abdouss, "Preparation and Characterization of High Efficiency Ion-Exchange Crosslinked Acrylic Fibers", J. Appl. Polym. Sci., 2006, 101, 2202-2209. https://doi.org/10.1002/app.23465
  12. H. Zhang, H. Nie, S. Li, C. J. B. White, and L. Zhu, "Crosslinking of Electrospun Polyacrylonitrile/Hydroxyethyl Cellulose Composite Nanofibers", Mater. Lett., 2009, 63, 1199-1202. https://doi.org/10.1016/j.matlet.2009.02.035
  13. G. P. Wu, C. X. Lu, Y. Y. Wang, and L. C. Ling, "Effect of Boric Acid on Oxidative Stabilization of Polyacrylonitrile Fibers", Fiber. Polym., 2011, 12, 979-982. https://doi.org/10.1007/s12221-011-0979-2
  14. H. S. Park and Y. H. Kim, "Effects of the Swelling of Polyacrylonitrile Films in Various Aqueous Solutions on the Reaction with Hydrazine", Text. Sci. Eng., 2014, 51, 159-167. https://doi.org/10.12772/TSE.2014.51.159
  15. B. W. Zhang, K. Fischer, D. Bieniek, and A. Kettrup, "Synthesis of Carboxyl Group Containing Hydrazine- Modified Polyacrylonitrile Fibres and Application for the Removal of Heavy Metals", React. Polym., 1994, 24, 49-58. https://doi.org/10.1016/0923-1137(94)90136-8
  16. J. Z. Xu, C. M. Tian, Z. G. Ma, M. Gao, H. Z. Guo, and Z. H. Yao, "Study on the Thermal Behavior and Flammability of the Modified Polyacrylonitrile Fibers", J. Therm. Anal. Cal., 2001, 63, 501-506. https://doi.org/10.1023/A:1010181618305
  17. R. B. Beevers, "Dependence of the Glass Transition Temperature of Polyacrylonitrile on Molecular Weight", J. Polym. Sci. Part A; Polym. Chem., 1964, 2, 5257-5265.
  18. I. Bunia, V. Neagu, and C. Luca, "Chemical Transformations of Different Acrylic Crosslinked Polymers with Primary Amines and Some Applications of the Synthesized Compounds", React. Func. Polym., 2006, 66, 871-883. https://doi.org/10.1016/j.reactfunctpolym.2005.12.001
  19. Z. Jia and Y. G. Yang, "Study on Structure and Properties of Polyacrylonitrile Fiber Modified by Hydrazine Hydrate", Adv. Mater. Res., 2012, 548, 24-28. https://doi.org/10.4028/www.scientific.net/AMR.548.24
  20. S. F. Fennessey and R. J. Farris, "Fabrication of Aligned and Molecularly Oriented Electrospun Polyacrylonitrile Nanofibers and the Mechanical Behavior of Their Twisted Yarns", Polymer, 2004, 45, 4217-4225. https://doi.org/10.1016/j.polymer.2004.04.001