DOI QR코드

DOI QR Code

Development of Work Zone Traffic Control Algorithm for Two Lane Road

공사구간 교대통행 동적제어 알고리즘 개발

  • Park, Hyunjin (Dept. of Transportation and Logistics Eng., Univ. of Hanyang) ;
  • Oh, Cheol (Dept. of Transportation and Logistics Eng., Univ. of Hanyang) ;
  • Moon, JaePil (Korea Institute of Construction Technology)
  • 박현진 (한양대학교 교통.물류공학과) ;
  • 오철 (한양대학교 교통.물류공학과) ;
  • 문재필 (한국건설기술연구원)
  • Received : 2016.05.09
  • Accepted : 2017.02.27
  • Published : 2017.04.30

Abstract

Work zone traffic control is of keen interest because both traffic operations and safety performances are directly affected by traffic management methods. In particular, work zone traffic on two-lane roads needs to be managed in more efficient and safer manners due to its unique characteristics of alternative right-of-way assignment. This study developed a dynamic control algorithm that can be used for real-time operations of two-lane work zone traffic. The performance of the developed algorithm was evaluated by VISSIM microscopic traffic simulator. An applied programming interface (API) based program was developed to plug-in the control algorithm onto the simulator. The results demonstrated the feasibility of the proposed control algorithm for two-lane work zone.

교대통행은 2차로 도로에서 한 차로를 점용한 공사 시, 다른 한 차로를 교대로 사용하여 교통류를 처리하는 공사구간 교통관리기법이다. 신호수를 이용한 교대통행 교통관리 방안은 작업자의 안전문제와 방향별 통과 교통수요에 능동적으로 대처하는데 한계가 있다. 이런 잠재적 문제점을 해결하기 위한 하나의 방안으로 이동식 교대통행 운영시스템을 개발 적용하는 것이다. 본 연구에서는 이 시스템의 교통제어 기법을 개발하였다. 검지기에서 수집되는 방향별 교통량을 이용하여 공사구간 교대통행에 적용 가능한 교통제어 운영변수를 도출하고, 공사구간 내 차량의 존재 유무를 고려한 알고리즘을 설계하였다. 또한 교대통행 제어시스템의 운영효율성 극대화를 위하여 제어변수 최적화를 실시하였다. 최적화방안으로 유전알고리즘 기법을 적용하였으며, 적용 유무에 따른 지체시간을 산출하여 운영효율성을 평가하였다. 그 결과, 최적화를 시행했을 때 총 지체시간과 차량 한 대당 지체시간 모두 감소하는 것으로 나타났다. 본 연구에서 제시한 교대통행 동적제어 알고리즘을 통하여 교대통행 공사구간을 통과하는 차량에게 지체시간 감소효과를 기대할 수 있다.

Keywords

References

  1. Bureau of Labor Statistics(2013), An analysis of fatal occupational injuries at road construction sites, 2003-2010. http://www.bls.gov/opub/mlr/2013/article/an-analysis-of-fatal-occupational-injuries-at-road-construction-sites-2003-2010.htm, 2016.03.12.
  2. Choi W. S. and Lee Y. I.(2002), "Development of a Bi-objective Cycle-free Signal Timing Model Using Genetic Algorithm," Journal of Korean Society of Transportation, vol. 20, no. 5, pp.81-98.
  3. FHWA(2008), Traffic signal timing manual, Federal Highway Administration.
  4. FHWA(2009), Manual of Uniform Traffic Control Devices.
  5. Kesur, K. B.(2009), "Advances in genetic algorithm optimization of traffic signals," Journal of Transportation Engineering, vol. 135, no. 4, pp.160-173. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:4(160)
  6. Kim B. M., Kim J. and Huh N. C.(2002), "Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms," The Journal of Intelligence and Information Systems, vol. 12, no. 2, pp.123-128.
  7. Kim J., Kim B. M. and Kim J. Y.(1998), "Traffic Signal Control with Fuzzy Membership Functions Generated by Genetic Algorithms," The Journal of Intelligence and Information Systems, vol. 8, no. 6, pp.78-84.
  8. Korean National Police Agency(2010), National Project for Advanced Traffic Operation and Management Final Report.
  9. Korean National Police Agency(2013), Rule for Installation and Maintenace of Traffic Safety Facilities.
  10. Korean National Policy Agency(2011), Traffic Signal Installation and Maintenance Manual.
  11. Lee J., Abdulhai B., Shalaby A. and Chung E. H.(2005), "Real-time optimization for adaptive traffic signal control using genetic algorithms," Journal of Intelligent Transportation Systems, vol. 9, no. 3, pp.111-122. https://doi.org/10.1080/15472450500183649
  12. Lee S. and Lee J.(1996), "Consideration of 24-hr volumes in selection of traffic signal control strategies for isolated intersections," TRR, 1553, TRB, pp.18-27.
  13. Lee Y. I., Choi W. S. and Lim J. S.(2001), "Development of a Cycle-free Based, Coordinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm)," Journal of Korean Society of Transportation, vol. 19, no. 1, pp.115-129.
  14. Lee Y. I., Lim J. S. and Yoon K. S.(2000), "Development of a Cycle-free Based, Coordinated Dynamic Signal Timing Model for Minimizing Queue-Lengths (Using Genetic Algorithm)," Journal of Korean Society of Transportation, vol. 18, no. 2, pp.73-89.
  15. Manual Highway Capacity(2010), HCM2010. Transportation Research Board, National Research Council, Washington, DC.
  16. Ministry of land, Infrastructure and Transport(2013), Development of Technique for Reducing Road Traffic Accidents.
  17. Ministry of Land, Transport and Maritime Affairs(2012), Road Work Zone Traffic Control Guiding Principle.
  18. Ministry of land, Transport and Maritime Affairs(2013), Guide on Road Capacity.
  19. Oregon DOT(2013), Oregon Work Zone Safety Audit Summary Report.
  20. Park B.(1998), "Development of genetic algorithm-based signal optimization program for oversaturated intersections," Ph.D. dissertation. Texas A&M University, College Station.
  21. Park B., Messer C. and Urbanik T.(1999), "Traffic signal optimization program for oversaturated conditions: genetic algorithm approach," TRR, 1683, TRB, pp.133-142.
  22. Park B., Messer C. and Urbanik T.(2000), "Enhanced genetic algorithm for signal-timing optimization of oversaturated intersections," TRR, 1727, TRB, pp.32-41.
  23. Stout L.(2013), "Implementing Portable Traffic Signals in the Problem Work Zone," IMSA Journal, vol. 1, no. 2, pp.54-60.
  24. Tarnoff P. J. and Parsonson P. S.(1981), Selecting traffic signal control at individual intersections, NCHRP Report 233.

Cited by

  1. Cooperative Automated Vehicle System for Avoiding Road Work Zone Using Dynamic Infrastructure Information vol.28, pp.3, 2017, https://doi.org/10.7467/ksae.2020.28.3.167