DOI QR코드

DOI QR Code

우리나라 근해 해양환경에 따른 가스터빈엔진 부식에 대한 연구

Corrosion of the Gas-Turbine Engine According to the Environment of the Korean Seas

  • 오경원 (호원대학교 국방과학기술학부) ;
  • 임세한 (해군사관학교 해양학과)
  • Oh, Kyungwon (Department of Defense Science & Technology, Howon University) ;
  • Lim, Sehan (Department of Oceanography, ROK Naval Academy)
  • 투고 : 2017.03.14
  • 심사 : 2017.04.24
  • 발행 : 2017.04.30

초록

한반도의 근해는 다양한 해양변화가 있으며, 작전을 수행하는 해군함정, 함재기, 해상운용 비행기, 공군의 전투기, 해안에 위치한 공항 및 비행장 등이 영향을 받는다. 특히 해양환경의 직접적인 영향인 염분은 가스터빈엔진과 같이 고온/고속으로 운용되는 장비에 연료의 황성분과 화학적 변화로 고온부식(Hot Corrosion)이 발생시킨다. 한계값으로 정의 할 수 없지만 염분에 의한 부식은 디미스터(공기흡입구) 높이가 7m 이하일 경우 해상에서 유입되는 염분이 증가하여 부식이 급격하게 증가하였다. 또한 서해보다 동해에서 작전임무를 수행하는 무기체계는 염분도, 풍량, 파고에 의해 비산되는 염분이 상대적으로 많아 부식율이 17% 증가함을 확인하였다. 해상에서 가스터빈엔진을 운용하는 해상무기체계는 염분유입을 최소화하기 위해 해상으로부터 13m이상에서 운용되어야 급격한 고온부식을 최소화 될 것으로 본다.

The sea of the Korean peninsula has undergone various marine changes, including naval vessels, naval operational aircrafts, air force fighters, coastal airports and airfields. In particular, salt directly affected by the marine environment, equipment operating under a high temperature / high speed as the gas turbine is the high temperature corrosion (Hot Corrosion) caused by sulfur components and salinity of the fuel used. When the height of the demister (air intake) is less than 7 m, the salinity of the salt entering the sea increases and the corrosion increases rapidly. In addition, the weapon systems operating in the East Sea than in the West Sea showed a 17% increase in the corrosion rate due to the relatively high salinity scattered by saline, wind, and wave. In order to minimize the salinity inflow, it should be operated at more than 13 m from the sea to minimize rapid hot corrosion.

키워드

참고문헌

  1. D. Chelton, Time and space scales of ocean variabilit y, Ocean Reference Stations, Fig. 4, 2001.
  2. D. Ho. Rhee, B.J. Lim, I.K. Ahn, H.C. Koo and J.H. Kim, "Effect of Sand and Dust Ingestion on Small G as Turbine Engines", KSME, Transactions of the Kor ean Society of Mechanical Engineers-B, Vol. 36, No. 2, pp.791-796, 2012. https://doi.org/10.3795/KSME-B.2012.36.8.791
  3. KOREA HYDROGRAPHIC AND OCEANOGRAPHI C AGENCY, Korea Maritime Information. pp. 6-93, 2014.
  4. G. H. Cho, D. C. Park, "Analysis on the Collecting Amount of Flying Salinity by the Weather Change", Spring Conference Paper, Architectural Institute of Korea, Vol.31 No.1(Structure Part), pp.83-84, 2011.
  5. N. Eliaz, G. Shemesh and R.M. Latanision, "Hot corr osion in gas turbine components", Engineering Failur e Analysis 9, pp. 31-43, 2002. https://doi.org/10.1016/S1350-6307(00)00035-2
  6. Hancock P. Vanadic and chloride attack of superalloy s. Mater Sci Technol, 3(7), pp.536-44, 1987. https://doi.org/10.1080/02670836.1987.11782265
  7. Stringer. High-temperature corrosion of superalloys. Mater Sci Technol, 3(7), pp.482-93, 1987. https://doi.org/10.1080/02670836.1987.11782259
  8. Wright IG.High-temperature corrion. In: Metals handbook, vol.13. 9th ed. Metals Park: ASM, pp.97-103, 1987.
  9. DSME Research Paper, "Study on Quantitative Analy sis of Impacts on the Marine Environment of Naval Operations", DSME, 2016.
  10. Nicholls JR. Designing oxidation-resistant coating. JOM, 52(1), pp.28-35, 2000. https://doi.org/10.1007/s11837-000-0112-2
  11. K. W. Oh, H. S. Choi, C. D Kong and H. B. Park, "Research on Naval Weapons Systems MRO by anal yzing Aerospace MRO Industry", SASE, Vol.8, No.2, pp.13-20, June, 2014.
  12. K. W. Oh, "Development of Korean Condition Base d Maintenance Systems to Monitor Naval Weapon Systems", SASE, Vol.10, No.4, pp.67-74, 2016.