DOI QR코드

DOI QR Code

Isolation and Characterization of Listeria phages for Control of Growth of Listeria monocytogenes in Milk

  • Lee, Sunhee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Min Gon (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Hee Soo (Department of Animal Science and Technology, Chung-Ang University) ;
  • Heo, Sunhak (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kwon, Mirae (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, GeunBae (Department of Animal Science and Technology, Chung-Ang University)
  • 투고 : 2017.04.10
  • 심사 : 2017.04.21
  • 발행 : 2017.04.30

초록

In this study, two Listeria bacteriophages, LMP1 and LMP7, were isolated from chicken feces as a means of biocontrol of L. monocytogenes. Both bacteriophages had a lytic effect on L. monocytogenes ATCC 7644, 15313, 19114, and 19115. Phages LMP1 and LMP7 were able to inhibit the growth of L. monocytogenes ATCC 7644 and 19114 in tryptic soy broth at $10^{\circ}C$ and $30^{\circ}C$. Nevertheless, LMP1 was more effective than LMP7 at inhibiting L. monocytogenes ATCC 19114. On the contrary, LMP7 was more effective than LMP1 at inhibiting L. monocytogenes ATCC 7644. The morphology of LMP1 and LMP7 resembled that of members of the Siphoviridae family. The growth of L. monocytogenes ATCC 7644 was inhibited by both LMP1 and LMP7 in milk; however, the growth of L. monocytogenes ATCC 19114 was only inhibited by LMP1 at $30^{\circ}C$. The lytic activity of bacteriophages was also evaluated at $4^{\circ}C$ in milk in order to investigate the potential use of these phages in refrigerated products. In conclusion, these two bacteriophages exhibit different host specificities and characteristics, suggesting that they can be used as a component of a phage cocktail to control L. monocytogenes in the food industry.

키워드

참고문헌

  1. Albino, L. A., Rostagno, M. H., Hungaro, H. M., and Mendonca, R. C. (2014) Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs. Foodborne Pathog. Dis. 11, 602-609. https://doi.org/10.1089/fpd.2013.1600
  2. Carlton, R. M., Noordman, W. H., Biswas, B., de Meester, E. D., and Loessner, M. J. (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43, 301-312. https://doi.org/10.1016/j.yrtph.2005.08.005
  3. Cartwright, E. J., Jackson, K. A., Johnson, S. D., Graves, L. M., Silk, B. J., and Mahon, B. E. (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg. Infect. Dis. 19, 1-9. https://doi.org/10.3201/eid1901.120393
  4. Carvalho, C., Susano, M., Fernandes, E., Santos, S., Gannon, B., Nicolau, A., Gibbs, P., Teixeira, P., and Azeredo, J. (2010) Method for bacteriophage isolation against target Campylobacter strains. Lett. Appl. Microbiol. 50, 192-197. https://doi.org/10.1111/j.1472-765X.2009.02774.x
  5. Coffey, B., Mills, S., Coffey, A., McAuliffe, O., and Ross, R. P. (2010) Phage and their lysins as biocontrol agents for food safety applications. Ann. Rev. Food Sci. Technol. 1, 449-468. https://doi.org/10.1146/annurev.food.102308.124046
  6. Denes, T., Vongkamjan, K., Ackermann, H. W., Moreno Switt, A. I., Wiedmann, M., and den Bakker, H. C. (2014) Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl. Environ. Microbiol. 80, 4616-4625. https://doi.org/10.1128/AEM.00720-14
  7. Dorscht, J., Klumpp, J., Bielmann, R., Schmelcher, M., Born, Y., Zimmer, M., Calendar, R., and Loessner, M. J. (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J. Bacteriol. 191, 7206-7215. https://doi.org/10.1128/JB.01041-09
  8. Eugster, M. R., Haug, M. C., Huwiler, S. G., and Loessner, M. J. (2011) The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol. Microbiol. 81, 1419-1432. https://doi.org/10.1111/j.1365-2958.2011.07774.x
  9. Farber, J. M. and Peterkin, P. I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476-511.
  10. Ferreira, V., Wiedmann,M., Teixeira, P., and Stasiewicz, M. J. (2014) Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 77, 150-170. https://doi.org/10.4315/0362-028X.JFP-13-150
  11. Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, A., and Rossmanith, P. (2016) Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100. Front. Microbiol. 7: 1152.
  12. Garrido, V., Vitas, A. I., and Garcia-Jalon, I. (2010) The problem of listeriosis and ready-to-eat products: Prevalence and persistence. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Menendez-Vilas, A. (ed), Formatex, Badajoz, Spain, pp. 1182-1189.
  13. Gill, J. J., Sabour, P. M., Leslie, K. E., and Griffiths, M. W. (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J. Appl. Microbiol. 101, 377-386. https://doi.org/10.1111/j.1365-2672.2006.02918.x
  14. Goulet, V., Hedberg, C., LeMonnier, A., and de Valk, H. (2008) Increasing incidence of listeriosis in France and other European countries. Emerg. Infect. Dis. 14, 734-740. https://doi.org/10.3201/eid1405.071395
  15. Hagens, S. and Loessner, M. J. (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76, 513-519. https://doi.org/10.1007/s00253-007-1031-8
  16. Hagens, S. and Loessner, M. J. (2010) Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations. Curr. Pharm. Biotechnol. 11, 58-68. https://doi.org/10.2174/138920110790725429
  17. Hagens, S. and Loessner, M. J. (2014) Phages of Listeria offer novel tools for diagnostics and biocontrol. Front Microbiol. 5, 159.
  18. Hagens, S. and Offerhaus, M. L. (2008) Bacteriophages - new weapons for food safety. Food Technol. 62, 46-54.
  19. Janez, N. and Loc-Carrillo, C. (2013) Use of phages to control Campylobacter spp. J. Microbiol. Method. 95, 68-75. https://doi.org/10.1016/j.mimet.2013.06.024
  20. Jassim, S. A. A. and Limoges, R. G. (2014) Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World J. Microbiol. Biotechnol. 30, 2153-2170. https://doi.org/10.1007/s11274-014-1655-7
  21. Klumpp, J., Dorscht, J., Lurz, R., Bielmann, R., Wieland, M., Zimmer, M., Calendar, R., and Loessner, M. J. (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: A model for the SPO1-like myoviruses of grampositive bacteria. J. Bacteriol. 190, 5753-5765. https://doi.org/10.1128/JB.00461-08
  22. Klumpp J. and Loessner M. J. (2013) Listeria phages: Genomics, evolution, and application. Bacteriophage. 3, e26861. https://doi.org/10.4161/bact.26861
  23. Meloni, D., Consolati, S. G., Mazza, R., Mureddu, A., Fois, F., Piras, F., and Mazzette, R. (2014) Presence and molecular characterization of the major serovars of Listeria monocytogenes in ten Sardinian fermented sausage processing plants. Meat Sci. 97, 443-450. https://doi.org/10.1016/j.meatsci.2014.02.012
  24. Ortiz, S., Lopez, V., and Martínez-Suarez, J. V. (2014) Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chlorideresistant strains. Food Microbiol. 39, 81-88. https://doi.org/10.1016/j.fm.2013.11.007
  25. Rodriguez-Rubio, L., García, P., Rodriguez, A., Billington, C., Hudson, J. A., and Martinez, B. (2015) Listeria phages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. Int. J. Food Microbiol. 205, 68-72. https://doi.org/10.1016/j.ijfoodmicro.2015.04.007
  26. Salama, S., Bolton, F. J., and Hutchinson, D. N. (1989) Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett. Appl. Microbiol. 8, 5-7. https://doi.org/10.1111/j.1472-765X.1989.tb00211.x
  27. Schmelcher, M. and Loessner, M. J. (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage. 4, e28137. https://doi.org/10.4161/bact.28137
  28. Sulakvelidze, A. (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric. 93, 3137-3146. https://doi.org/10.1002/jsfa.6222
  29. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. and Kreft, J. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
  30. Zinno, P., Devirgiliis, C., Ercolini, D., Ongeng, D., and Mauriello, G. (2014) Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol. 191, 69-74. https://doi.org/10.1016/j.ijfoodmicro.2014.08.037

피인용 문헌

  1. from the Napahai plateau wetland vol.64, pp.3, 2018, https://doi.org/10.1139/cjm-2017-0572
  2. Bacteriophage control of Salmonella Typhimurium in milk pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0446-6
  3. Production of Bacteriophages by Listeria Cells Entrapped in Organic Polymers vol.10, pp.6, 2018, https://doi.org/10.3390/v10060324
  4. Listeria monocytogenes in the Food Processing Environment vol.5, pp.2, 2018, https://doi.org/10.1007/s40588-018-0090-1
  5. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00012
  6. Development of Kinetic Models and Their Applications to Describe the Resistance of Listeria monocytogenes in Napa Cabbage Kimchi to Fermentation Conditions vol.26, pp.1, 2017, https://doi.org/10.3136/fstr.26.53
  7. Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices vol.4, pp.None, 2017, https://doi.org/10.3389/fsufs.2020.521645
  8. Bacteriophage biocontrol to fight Listeria outbreaks in seafood vol.145, pp.None, 2017, https://doi.org/10.1016/j.fct.2020.111682
  9. Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments vol.8, pp.11, 2017, https://doi.org/10.3390/microorganisms8111764
  10. Combatting intracellular pathogens using bacteriophage delivery vol.47, pp.4, 2017, https://doi.org/10.1080/1040841x.2021.1902266
  11. Dynamic model to describe kinetic behavior of Listeria monocytogenes in smoked salmon vol.41, pp.5, 2017, https://doi.org/10.1111/jfs.12925