DOI QR코드

DOI QR Code

Accurate Step-Count Detection based on Recognition of Smartphone Hold Position

스마트폰의 소지위치 인지 기반의 정확한 보행수 검출 기법

  • Received : 2016.07.19
  • Accepted : 2017.02.02
  • Published : 2017.04.15

Abstract

As the walking exercise is emphasized in personalized healthcare, numerous services demand walking information. Along with the propagation of smartphones nowadays, many step-counter applications have been released. But these applications are error-prone to abnormal movements such as simple shaking or vibrations; also, different step counts are shown when the phone is positioned in different locations of the body. In this paper, the proposed method accurately counts the steps regardless of the smartphone position by using an accelerometer and a proximity sensor. A threshold is set on each of the six positions to minimize the error of undetection and over-detection, and the cut-off section is set to eliminate any noise. The test results show that the six position type were successfully identified, and through a comparison experiment with the existing application, the proposed technique was verified as superior in terms of accuracy.

개인의 건강 관리를 위해 보행 운동이 강조되면서 보행 정보 서비스의 요구가 많아지고 있다. 최근 스마트폰이 보급되면서 건강 관리 보조를 위한 보행수 측정 앱이 개발되고 있다. 그러나 기존의 앱은 보행 외의 움직임이나 진동을 보행으로 인지하여 보행수가 증가되거나, 다양한 스마트폰 소지위치에서 다른 정확도를 보이는 등의 문제점이 제기되었다. 본 논문에서는 이와 같은 문제를 해결하기 위해 스마트폰의 가속도 센서와 근접 센서를 이용하여 소지위치에 상관없이 정확한 보행수를 측정할 수 있는 방안을 제안한다. 이를 위해 스마트폰의 6가지 소지위치별 임계값 범위를 설정하여 미검출 및 과검출의 오류를 최소화하였고 노이즈를 제거하기 위해 잠금구간을 설정하는 알고리즘을 제안한다. 구현 결과 6가지 소지위치를 인식하였고 상용화된 앱과 비교실험을 통하여 제안하는 기법의 정확도가 높음을 확인하였다.

Keywords

Acknowledgement

Grant : 퍼스널 빅데이터를 활용한 마이닝 마인즈 핵심 기술 개발

Supported by : 산업통상자원부

References

  1. J. N. Morris and A. E. Hardman, "Walking to health," Sports medicine, Vol. 23, No. 5, pp. 306-332, May. 1997. https://doi.org/10.2165/00007256-199723050-00004
  2. S. C. Moore, A. V. Patel, C. E. Matthews, A. B. de Gonzalez, Y. Park, H. A. Katki, S. L. Martha, W. Elisabete, K. Visvanathan, K. J. Helzlsouer, M. Thun, S. M. Gapstur, H. Patricia, and I. Lee, "Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis," PLoS Medicine, Vol. 9, No. 11, Nov. 2012.
  3. A. B. Newman, E. M. Simonsick, B. L. Naydeck, R. M. Boudreau, S. B. Kritchevsky, M. C. Nevitt, M. Pahor, S. Satterfield, J. S. Brach, S. A. Studenski, and T. B. Harris, "Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability," JAMA, Vol. 295, No. 17, pp. 2018-2026, May. 2006. https://doi.org/10.1001/jama.295.17.2018
  4. N. J. Kim, J. H. Hong, and T. Lee, "Processing of 3-Axial Accelerometer Sensor Data and Its Application, Proc. of The Korea Contents Association 2005 Fall Conference, Vol. 3, No. 1, pp. 548-551, 2005. (In Korean)
  5. J. J. Han, J. W. Kim, and D. H. Hwang, "Design of a Robust Pedometer for Personal Navigation System against Ground Variation and Walking Behavior," The Transaction of The Korean Institute of Electrical Engineers D, Vol. 55D, No. 9, pp. 420-422, 2006. (In Korean)
  6. H. Yoo, J. Suh, E. Cha, and H. Bae, "Walking Number Detection Algorithm using a 3-Axial Accelerometer Sensor and Activity Monitoring," Journal of The Korea Contents Association, Vol. 8, No. 8, pp. 253-260, 2008. (In Korean) https://doi.org/10.5392/JKCA.2008.8.8.253
  7. Y. Kim, S. Kim, H. Lho, and W. Cho, "Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer," KSII Transactions on Internet and Information Systems, Vol. 12, No. 3, pp. 17-26, 2011. (In Korean)
  8. J. Nam, and H. H. Choi, "Step Count Detection Using 3 Axes Acceleration Sensor," Proc. of The Korean Institute of Electrical Engineers 2006, pp. 291-292, 2016. (In Korean)
  9. N. Z. Naqvi, A. Kumar, A. Chauhan, and K. Sahni, "Step Counting Using Smartphone-Based Accelerometer," International Journal on Computer Science and Engineering, Vol. 4, No. 5, pp. 675-681, May. 2012.
  10. A. R. Pratama, Widyawan, and H. Risanuri, "Smartphone-based Pedestrian Dead Reckoning as an Indoor Positioning System," 2012 International Conference on System Engineering and Technology, pp. 1-6, 2012.
  11. W. Kang, S. Nam, Y. Han, and S. Lee, "Improved Heading Estimation for Smartphone-Based Indoor Positioning Systems," IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2449-2453, 2012.
  12. J. Qian, J. Ma, R. Ying, P. Liu, and L. Pei, "An Improved Indoor Localization Method Using Smartphone Inertial Sensors," 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1-7, 2013.
  13. B. Shin, J. H. Lee, H. Lee, E. Kim, J. Kim, S. Lee, Y. Cho, S. Park, and T. Lee, "Indoor 3D Pedestrian Tracking Algorithm Based on PDR using Smartphone," 12th International Conference on Control, Automation and Systems, pp. 1442-1445, 2012.
  14. Noom, Inc, [Online]. Available: https://www.noom.com/ (downloaded 2015, Jan. 7)
  15. G. Xuan, W. Zhang, and P. Chai, "EM algorithms of Gaussian mixture model and hidden markov model," 2001 International Conference on Image Processing, Vol. 1, pp. 145-148, 2001.