초록
PHR(Personal Health Record)기반 헬스케어 서비스 플랫폼 지능화를 위해서는 사용자 맞춤형 건강정보 제공서비스가 필요하다. 본 논문에서는 개인 맞춤형 건강정보 추천을 위해서 온톨로지 기반 건강 정보 모델을 제안하였다. 또한 기계학습과 데이터마이닝 기법을 적용한 유사 건강정보 탐사 알고리즘을 설계하였다. 기존의 데이터마이닝 기법중 연관규칙 알고리즘을 확장하여 속성을 기반으로 연관규칙 탐사를 수행하여 지식탐사의 연관성을 높이고 효율적인 탐사시간을 제공할 수 있도록 하였다. 머신러닝의 한 기법인 K근접이웃 알고리즘을 적용하여 사용자 프로파일별 그룹화를 수행하고 유사패턴의 사용자 프로파일을 검색할 수 있도록 하였다. 이는 사용자의 질환과 건강상태에 따른 맞춤형 건강정보 탐사 수행의 효율성을 높인다. 제안된 알고리즘은 개인 맞춤형 헬스케어 서비스 플랫폼에서 추론과정에 적용되어 사용자에게 개인맞춤형건강정보를 추천하는 것을 가능하게 한다. 이는 고령화사회에서 스마트한 자가 건강관리에 활용될 수 있다.
It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.