DOI QR코드

DOI QR Code

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO. (Environmental and Nano Sciences Research Group, Department of Chemistry, University of the Western Cape) ;
  • Fatoba, OO. (Environmental and Nano Sciences Research Group, Department of Chemistry, University of the Western Cape) ;
  • Totito, TC. (Environmental and Nano Sciences Research Group, Department of Chemistry, University of the Western Cape) ;
  • Roos, WD. (Department of Physics, University of the Free State) ;
  • Petrik, LF. (Environmental and Nano Sciences Research Group, Department of Chemistry, University of the Western Cape)
  • Received : 2016.10.06
  • Accepted : 2017.02.11
  • Published : 2017.04.30

Abstract

This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Keywords

References

  1. Ahmed S, Rasul MG, Brown R, Hashib MA. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage, 92, 311 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028.
  2. Hintsho N, Petrik L, Nechaev A, Titinchi S, Ndungu P. Photocatalytic activity of titanium dioxide carbon nanotube nano-composites modified with silver and palladium nanoparticles. Appl Catal B Environ, 156-157, 273 (2014). https://doi.org/10.1016/j.apcatb.2014.03.021.
  3. Dolat D, Quici N, Kusiak-Nejman E, Morawski AW, Puma GL. One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,C- $TiO_{2}$) photocatalysts: effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B Environ, 115-116, 81 (2012). https://doi.org/10.1016/j.apcatb.2011.12.007.
  4. Lee JH, Kim IK, Cho D, Youn JI, Kim YJ, Oh HJ. Photocatalytic performance of graphene/Ag/$TiO_{2}$ hybrid nanocomposites. Carbon Lett, 16, 247 (2015). https://doi.org/10.5714/CL.2015.16.4.247.
  5. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today, 147, 1 (2009). https://doi.org/10.1016/j.cattod.2009.06.018.
  6. Saud PS, Ghouri ZK, Pant B, An T, Lee JH, Park M, Kim HY. Photocatalytic degradation and antibacterial investigation of nano synthesized $Ag_3VO_4$ particles @PAN nanofibers. Carbon Lett, 18, 30 (2016). https://doi.org/10.5714/CL.2016.18.030.
  7. El-Kalliny AS, Ahmed SF, Rietveld LC, Appel PW. Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor. Drinking Water Eng Sci, 7, 41 (2014). https://doi.org/10.5194/dwes-7-41-2014.
  8. Friedmann D, Mendive C, Bahnemann D. $TiO_{2}$ for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B Environ, 99, 398 (2010). https://doi.org/10.1016/j.apcatb.2010.05.014.
  9. Monreal HA, Chacon-Nava JG, Arce-Colunga U, Martinez CA, Casillas PG, Martinez-Villafane A. Sol-gel preparation of titanium dioxide nanoparticles in presence of a linear polysaccharide. Micro Nano Lett, 4, 187 (2009). https://doi.org/10.1049/mnl.2009.0070.
  10. Bestetti M, Sacco D, Brunella MF, Franz S, Amadelli R, Samiolo L. Photocatalytic degradation activity of titanium dioxide sol-gel coatings on stainless steel wire meshes. Mater Chem Phys, 124, 1225 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.062.
  11. Wang C, Li Y, Shi H, Huang J. Preparation and characterization of natural zeolite supported nano $TiO_{2}$ photocatalysts by a modified electrostatic self-assembly method. Surf Interface Anal, 47, 142 (2015). https://doi.org/10.1002/sia.5686.
  12. Zhang TH, Piao LY, Zhao SL, Xu Z, Wu Q, Kong C. Application of $TiO_{2}$ with different structures in solar cells. Chin Phys B, 21, 118401 (2012). https://doi.org/10.1088/1674-1056/21/11/118401.
  13. Fernandez A, Lassaletta G, Jiménez VM, Justo A, Gonzalez-Elipe AR, Herrmann JM, Tahiri H, Ait-Ichou Y. Preparation and characterization of $TiO_{2}$ photocatalysts supported on various rigid supports (glass, quartz and stainless steel): comparative studies of photocatalytic activity in water purification. Appl Catal B Environ, 7, 49 (1995). https://doi.org/10.1016/0926-3373(95)00026-7.
  14. Li W, Shah IS, Sung M, Huang CP. Structure and size distribution of TiO2 nanoparticles deposited on stainless steel mesh. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom, 20, 2303 (2002). https://doi.org/10.1116/1.1520557.
  15. Zhang L, Zhu Y, He Y, Li W, Sun H. Preparation and performances of mesoporous $TiO_{2}$ film photocatalyst supported on stainless steel. Appl Catal B Environ, 40, 287 (2003). https://doi.org/10.1016/S0926-3373(02)00154-6.
  16. Habibi S, Fatemi S, Izadyar S, Mousavand T. $TiO_{2}$ nanoparticle layer formation on ceramic support, a statistical approach to control influential synthesis parameters. Powder Technol, 229, 51 (2012). https://doi.org/10.1016/j.powtec.2012.06.004.
  17. Wang C, Shi H, Li Y. Synthesis and characterization of natural zeolite supported Cr-doped $TiO_{2}$ photocatalysts. Appl Surf Sci, 258, 4328 (2012). https://doi.org/10.1016/j.apsusc.2011.12.108.
  18. Omri A, Benzina M, Bennour F. Industrial application of photocatalysts prepared by hydrothermal and sol-gel methods. J Ind Eng Chem, 21, 356 (2015). https://doi.org/10.1016/j.jiec.2014.02.045.
  19. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023.
  20. Lee HM, Kim HG, An KH, Kim BJ. Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation. Carbon Lett, 15, 71 (2014). https://doi.org/10.5714/CL.2014.15.1.071.
  21. Abdo HS, Khalil KA, Al-Deyab SS, Altaleb H, Sherif ESM. Antibacterial effect of carbon nanofibers containing Ag nanoparticles. Fibers Polym, 14, 1985 (2013). https://doi.org/10.1007/s12221-013-1985-3.
  22. Ba-Abbad MM, Kadhum AAH, Mohamed AB, Takriff MS, Sopian K. Synthesis and catalytic activity of $TiO_{2}$ nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci, 7, 4871 (2012).
  23. Chang JA, Vithal M, Baek IC, Seok SI. Morphological and phase evolution of $TiO_{2}$ nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid. J Solid State Chem, 182, 749 (2009). https://doi.org/10.1016/j.jssc.2008.12.024.
  24. Cao T, Li Y, Wang C, Shao C, Liu Y. One-step nonaqueous synthesis of pure phase $TiO_{2}$ nanocrystals from $TiCl_4$ in butanol and their photocatalytic properties. J Nanomater, 2011, 267415 (2011). https://doi.org/10.1155/2011/267415.
  25. Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM. Synthesis and characterization of pure anatase $TiO_{2}$ nanoparticles. J Mater Sci Mater Electron, 22, 821 (2011). https://doi.org/10.1007/s10854-010-0218-4.
  26. Luo Q, Li X, Li X, Wang D, An J, Li X. Visible light photocatalytic activity of $TiO_{2}$ nanoparticles modified by pre-oxidized polyacrylonitrile. Catal Commun, 26, 239 (2012). https://doi.org/10.1016/j.catcom.2012.06.008.
  27. Janus M, Tryba B, Kusiak E, Tsumura T, Toyoda M, Inagaki M, Morawski AW. $TiO_{2}$ nanoparticles with high photocatalytic activity under visible light. Catal Lett, 128, 36 (2009). https://doi.org/10.1007/s10562-008-9721-0.
  28. Shin HK, Park M, Kim HY, Park SJ. An overview of new oxidation methods for polyacrylonitrile‑based carbon fibers. Carbon Lett, 16, 11 (2015). https://doi.org/10.5714/CL.2015.16.1.011.
  29. Leong KH, Monash P, Ibrahim S, Saravanan P. Solar photocatalytic activity of anatase $TiO_{2}$ nanocrystals synthesized by non-hydrolitic sol-gel method. Sol Energy, 101, 321 (2014). https://doi. org/10.1016/j.solener.2014.01.006.
  30. Miao G, Chen L, Qi Z. Facile synthesis and active photocatalysis of mesoporous and microporous $TiO_{2}$ nanoparticles. Eur J Inorg Chem, 2012, 5864 (2012). https://doi.org/10.1002/ejic.201200833.
  31. Li Y, Zhang S, Yu Q, Yin W. The effects of activated carbon supports on the structure and properties of $TiO_{2}$ nanoparticles prepared by a sol-gel method. Appl Surf Sci, 253, 9254 (2007). https://doi.org/10.1016/j.apsusc.2007.05.057.
  32. Suwarnkar MB, Dhabbe RS, Kadam AN, Garadkar KM. Enhanced photocatalytic activity of Ag doped $TiO_{2}$ nanoparticles synthesized by a microwave assisted method. Ceram Int, 40, 5489 (2014). https://doi.org/10.1016/j.ceramint.2013.10.137.
  33. Zhang Y, Xu H, Xin Q. Enhanced phenol degradation by pulsed plasma cooperated with TiO2 nanotubes film. Proceeding of 2012 Asia Pacific Conference on Environmental Science and Technology, Kuala Lumpur, 376 (2012).
  34. Xie Y, Heo SH, Yoo SH, Ali G, Cho SO. Synthesis and photocatalytic activity of anatase $TiO_{2}$ nanoparticles-coated carbon nanotubes. Nanoscale Res Lett, 5, 603 (2009). https://doi.org/10.1007/s11671-009-9513-5.
  35. Gupta K, Singh RP, Pandey A, Pandey A. Photocatalytic antibacterial performance of $TiO_{2}$ and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J Nanotechnol, 4, 345 (2013). https://doi.org/10.3762/bjnano.4.40.
  36. Dong F, Guo S, Wang H, Li X, Wu Z. Enhancement of the visible light photocatalytic activity of C-doped $TiO_{2}$ nanomaterials prepared by a green synthetic approach. J Phys Chem C, 115, 13285 (2011). https://doi.org/10.1021/jp111916q.
  37. Aziz AA, Puma GL, Ibrahim S, Saravan P. Preparation, characterisation and solar photoactivity of titania supported strontium ferrite nanocomposite photocatalyst. J Exp Nanosci, 8, 295 (2013). https://doi.org/10.1080/17458080.2012.675087.
  38. Dhabbe RS, Kadam AN, Suwarnkar MB, Kokate MR, Garadkar KM. Enhancement in the photocatalytic activity of Ag loaded Ndoped $TiO_{2}$ nanocomposite under sunlight. J Mater Sci Mater Electron, 25, 3179 (2014). https://doi.org/10.1007/s10854-014-2001-4.
  39. Rodriguez-Gonzalez V, Alfaro SO, Torres-Martinez LM, Cho SH, Lee SW. Silver-$TiO_{2}$ nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B Environ, 98, 229 (2010). https://doi.org/10.1016/j.apcatb.2010.06.001.
  40. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline $TiO_{2}$. Appl Catal B Environ, 69, 138 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015.
  41. Cong Y, Li X, Qin Y, Dong Z, Yuan G, Cui Z, Lai X. Carbon-doped $TiO_{2}$ coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B Environ, 107, 128 (2011). https://doi.org/10.1016/j.apcatb.2011.07.005.
  42. Sheikhnejad-Bishe O, Zhao F, Rajabtabar-Darvishi A, Khodadad E, Mostofizadeh A, Huang Y. Influence of temperature and surfactant on the photocatalytic performance of $TiO_{2}$ Nanoparticles. Int J Electrochem Sci, 9, 4230 (2014).
  43. Chen D, Du G, Zhu Q, Zhou F. Synthesis and characterization of $TiO_{2}$ pillared montmorillonites: application for methylene blue degradation. J Colloid Interface Sci, 409, 151 (2013). https://doi.org/10.1016/j.jcis.2013.07.049.

Cited by

  1. Influence of Tetraalkylammonium Compounds on Photocatalytic and Physical Properties of TiO2 vol.148, pp.8, 2018, https://doi.org/10.1007/s10562-018-2455-8