References
- Baek, S .J., Kim, J. S., Jackson, F. R., Eling, T. E., McEntee, M. F. and Lee, S. H. (2004) Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425-2432. https://doi.org/10.1093/carcin/bgh255
- Bruning, A., Burger, P., Vogel, M., Rahmeh, M., Friese, K., Lenhard, M. and Burges, A. (2009) Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis. Invest. New Drugs 27, 543-551. https://doi.org/10.1007/s10637-008-9206-4
- Cardenas, C., Quesada, A. R. and Medina, M. A. (2014) Insights on the antitumor effects of kahweol on human breast cancer: decreased survival and increased production of reactive oxygen species and cytotoxicity. Biochem. Biophys. Res. Commun. 447, 452-458. https://doi.org/10.1016/j.bbrc.2014.04.026
- Cavin, C., Holzhaeuser, D., Scharf, G., Constable, A., Huber, W. W. and Schilter, B. (2002) Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem. Toxicol. 40, 1155-1163. https://doi.org/10.1016/S0278-6915(02)00029-7
- Chae, J. I., Jeon, Y. J. and Shim, J. H. (2014) Anti-proliferative properties of kahweol in oral squamous cancer through the regulation specificity protein 1. Phytother. Res. 28, 1879-1886. https://doi.org/10.1002/ptr.5217
- Chen, H. H. and Wang, D. L. (2004) Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol. Pharmacol. 65, 1130-1140. https://doi.org/10.1124/mol.65.5.1130
- Cho, K. N., Sukhthankar, M., Lee, S. H., Yoon, J. H. and Baek, S. J. (2007) Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. Eur. J. Cancer 43, 2404-2412. https://doi.org/10.1016/j.ejca.2007.07.020
- Choi, D. W., Lim, M. S., Lee, J. W., Chun, W., Lee, S. H., Nam, Y. H., Park, J. M., Choi, D. H., Kang, C. D., Lee, S. J. and Park, S. C. (2015) The cytotoxicity of kahweol in HT-29 human colorectal cancer cells is mediated by apoptosis and suppression of heat shock protein 70 expression. Biomol. Ther. (Seoul) 23, 128-133. https://doi.org/10.4062/biomolther.2014.133
- Giovannucci, E. (1998) Meta-analysis of coffee consumption and risk of colorectal cancer. Am. J. Epidemiol. 147, 1043-1052. https://doi.org/10.1093/oxfordjournals.aje.a009398
- Hai, T. and Hartman, M. G. (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
- Kim, H. G., Hwang, Y. P. and Jeong, H. G. (2009) Kahweol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol. Lett. 187, 28-34. https://doi.org/10.1016/j.toxlet.2009.01.022
- Lee, K. A., Chae, J. I. and Shim, J. H. (2012) Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J. Biomed. Sci. 19, 60. https://doi.org/10.1186/1423-0127-19-60
- Lee, S. H., Bahn, J. H., Whitlock, N. C. and Baek, S. J. (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192. https://doi.org/10.1038/onc.2010.251
- Lee, S. H., Kim, J. S., Yamaguchi, K., Eling, T. E. and Baek, S. J. (2005) Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69. https://doi.org/10.1016/j.bbrc.2004.12.138
- Lee, S. H., Yamaguchi, K., Kim, J. S., Eling, T. E., Safe, S., Park, Y. and Baek, S. J. (2006) Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27, 972-981. https://doi.org/10.1093/carcin/bgi268
- Liang, G., Wolfgang, C. D., Chen, B. P., Chen, T. H. and Hai, T. (1996) ATF3 gene. Genomic organization, promoter, and regulation. J. Biol. Chem. 271, 1695-1701. https://doi.org/10.1074/jbc.271.3.1695
- Lu, D., Wolfgang, C. D. and Hai, T. (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J. Biol. Chem. 281, 10473-10481. https://doi.org/10.1074/jbc.M509278200
- Saito, T., Abe, D. and Nogata, Y. (2015) Coffee diterpenes potentiate the cytolytic activity of KHYG-1 NK Leukemia cells. Food Sci. Technol. Res. 21, 281-284. https://doi.org/10.3136/fstr.21.281
- St Germain, C., Niknejad, N., Ma, L., Garbuio, K., Hai, T. and Dimitroulakos, J. (2010) Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3. Neoplasia 12, 527-538. https://doi.org/10.1593/neo.92048
- Um, H. J., Oh, J. H., Kim, Y. N., Choi, Y. H., Kim, S. H., Park, J. W. and Kwon, T. K. (2010) The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through down-regulation of Bcl-2 and c-FLIP. Chem. Biol. Interact. 186, 36-42. https://doi.org/10.1016/j.cbi.2010.04.013
- Whitlock, N. C., Bahn, J. H., Lee, S. H., Eling, T. E. and Baek, S. J. (2011) Resveratrol-induced apoptosis is mediated by early growth response-1, Kruppel-like factor 4, and activating transcription factor 3. Cancer Prev. Res. (Phila) 4, 116-127. https://doi.org/10.1158/1940-6207.CAPR-10-0218
- Yan, C., Lu, D., Hai, T. and Boyd, D. D. (2005) Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 24, 2425-2435. https://doi.org/10.1038/sj.emboj.7600712
Cited by
- ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0919-8
- An insight towards anticancer potential of major coffee constituents vol.44, pp.4, 2018, https://doi.org/10.1002/biof.1437
- Manzamine A Exerts Anticancer Activity against Human Colorectal Cancer Cells vol.16, pp.8, 2018, https://doi.org/10.3390/md16080252
- 오미자 박 추출물 및 schizandrin에 의한 암세포 항성장 및 세포사멸 활성 vol.28, pp.4, 2018, https://doi.org/10.5352/jls.2018.28.4.415
- In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC vol.40, pp.None, 2018, https://doi.org/10.1186/s40902-018-0183-z
- The Impact of Coffee and Its Selected Bioactive Compounds on the Development and Progression of Colorectal Cancer In Vivo and In Vitro vol.23, pp.12, 2017, https://doi.org/10.3390/molecules23123309
- Chemopreventive effect of coffee against colorectal cancer and hepatocellular carcinoma vol.22, pp.1, 2017, https://doi.org/10.1080/10942912.2019.1593193
- Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties vol.20, pp.17, 2017, https://doi.org/10.3390/ijms20174238
- Acute Kahweol Treatment Attenuates Traumatic Brain Injury Neuroinflammation and Functional Deficits vol.11, pp.10, 2017, https://doi.org/10.3390/nu11102301
- ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.618987
- ATF-3 expression inhibits melanoma growth by downregulating ERK and AKT pathways vol.101, pp.5, 2017, https://doi.org/10.1038/s41374-020-00516-y
- Decaffeinated coffee and its benefits on health: focus on systemic disorders vol.61, pp.15, 2017, https://doi.org/10.1080/10408398.2020.1779175
- Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach vol.87, pp.None, 2017, https://doi.org/10.1016/j.jff.2021.104764