DOI QR코드

DOI QR Code

Capsanthin Inhibits both Adipogenesis in 3T3-L1 Preadipocytes and Weight Gain in High-Fat Diet-Induced Obese Mice

  • Jo, Sung Jun (Life Science Research Institute, E.S. Biotech. Co. Ltd.) ;
  • Kim, Jeung Won (Life Science Research Institute, E.S. Biotech. Co. Ltd.) ;
  • Choi, Hye Ok (Life Science Research Institute, E.S. Biotech. Co. Ltd.) ;
  • Kim, Jung Hwan (Life Science Research Institute, E.S. Biotech. Co. Ltd.) ;
  • Kim, Hyung Joong (Life Science Research Institute, E.S. Biotech. Co. Ltd.) ;
  • Woo, Sun Hee (Department of Agronomia, Chungbuk National University) ;
  • Han, Byung Hoon (Life Science Research Institute, E.S. Biotech. Co. Ltd.)
  • Received : 2017.03.06
  • Accepted : 2017.03.18
  • Published : 2017.05.01

Abstract

Adipogenesis in murine preadipocyte 3T3L-1 has been used as a model system to study anti-obese bioactive molecules. During adipogenesis in 3T3-L1 preadipocytes, we found that capsanthin inhibited adipogenesis ($IC_{50}$; $2.5{\mu}M$) and also showed lipolytic activity in differentiated adipocytes from the preadipocytes ($ED_{50}$; 872 nM). We identified that the pharmacological activity of capsanthin on adipogenesis in 3T3-L1 was mainly due to its adrenoceptor-${\beta}_2$-agonistic activity. In high-fat diet animal model study, capsanthin significantly enhanced spontaneous locomotive activities together with progressive weight-loss. The capsanthin-induced activation of kinetic behavior in mice was associated with the excessive production of ATP initiated by both the enhanced lipolytic activity together with accelerated oxidation of fatty acids due to the adrenoceptor ${\beta}_2$-agonistic activity of capsanthin. Capsanthin also dose-dependently increased adiponectin and p-AMPK activity in high fat diet animals, suggesting that capsanthin has both anti-obesity and insulin sensitizing activities.

Keywords

References

  1. Antuna-Puente, B., Feve, B., Fellahi, S. and Bastard, J. P. (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 34, 2-11. https://doi.org/10.1016/j.diabet.2007.09.004
  2. Babamoto, K. S. and Hirokawa, W. T. (1992) Doxazosin: a new alpha 1-adrenergic antagonist. Clin. Pharm. 11, 415-427.
  3. Bergman, R. N. and Ader, M. (2000) Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 11, 351-356. https://doi.org/10.1016/S1043-2760(00)00323-4
  4. Diepvens, K., Westerterp, K. R. and Westerterp-Plantenga, M. S. (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R77-R85. https://doi.org/10.1152/ajpregu.00832.2005
  5. Farmer, S. R. (2006) Transcriptional control of adipocyte formation. Cell Metab. 4, 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  6. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E. and Lodish, H. F. (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U.S.A. 98, 2005-2010. https://doi.org/10.1073/pnas.98.4.2005
  7. Gil-Campos, M., Canete, R. R. and Gil A. (2004) Adiponectin, the missing link in insulin resistance and obesity. Clin. Nutr. 23, 963-974. https://doi.org/10.1016/j.clnu.2004.04.010
  8. Hickman, I. J., Whitehead, J. P., Prins, J. B. and Macdonald, G. A. (2007) Raised alanine transaminase and decreased adiponectin are features of the metabolic syndrome in patients with type 2 diabetes. Diabetes Obes. Metab. 9, 438-440. https://doi.org/10.1111/j.1463-1326.2006.00604.x
  9. Hotamisligil, G. S. (1999) The role of TNF-alpha and TNF receptors in obesity and insulin resistance. J. Intern. Med. 245, 621-625. https://doi.org/10.1046/j.1365-2796.1999.00490.x
  10. Hsu, C. L. and Yen, G. C. (2007) Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem. 55, 1730-1736. https://doi.org/10.1021/jf062912b
  11. Joo, J. I., Kim, D. H., Choi, J. W. and Yun, J. W. (2010) Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome. Res. 9, 2977-2987. https://doi.org/10.1021/pr901175w
  12. Kang, J. H., Goto, T., Han, I. S., Kawada, T., Kim, Y. M. and Yu, R. (2010) Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring) 18, 780-787. https://doi.org/10.1038/oby.2009.301
  13. Kong, C. S. and Park, K. Y. (2008) Anti-obesity effect of garlic-added kochujang in 3T3-L1 adipocytes. J. Food Sci. Nutr. 13, 66-70.
  14. Lee, M. S., Kim, C. T., Kim, I. H. and Kim, Y. (2011) Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother. Res. 25, 935-939. https://doi.org/10.1002/ptr.3339
  15. Lee, P., Birzniece, V., Umpleby, A. M., Poljak, A. and Ho, K. K. (2015) Formoterol, a highly beta2-selective agonist, induces gender-dimorphic whole body leucine metabolism in humans. Metabolism 64, 506-512. https://doi.org/10.1016/j.metabol.2014.12.005
  16. Lin, F. T. and Lane, M. D. (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc. Natl. Acad. Sci. U.S.A. 91, 8757-8761. https://doi.org/10.1073/pnas.91.19.8757
  17. Liu, Y., Retnakaran, R., Hanley, A., Tungtrongchitr, R., Shaw, C. and Sweeney, G. (2007) Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J. Clin. Endocrinol. Metab. 92, 4313-4318. https://doi.org/10.1210/jc.2007-0890
  18. Lizcano, J. M., Goransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Makela, T. P., Hardie, D. G. and Alessi, D. R. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833-843. https://doi.org/10.1038/sj.emboj.7600110
  19. Mahmood, T. and Yang, P. C. (2012) Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 4, 429-434. https://doi.org/10.4103/1947-2714.100998
  20. Maoka, T., Mochida, K., Kozuka, M., Ito, Y., Fujiwara, Y., Hashimoto, K., Enjo, F., Ogata, M., Nobukuni, Y., Tokuda, H. and Nishino, H. (2001) Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L. Cancer Lett. 172, 103-109. https://doi.org/10.1016/S0304-3835(01)00635-8
  21. Matsufuji, H., Nakamura, H., Chino, M. and Takeda, M. (1998) Antioxidant activity of capsanthin and the fatty acid esters in paprika (capsicum annuum). J. Agric. Food Chem. 46, 3468-3472. https://doi.org/10.1021/jf980200i
  22. Otton, S. V., Inaba, T. and Kalow, W. (1984) Competitive inhibition of sparteine oxidation in human liver by beta-adrenoceptor antagonists and other cardiovascular drugs. Life Sci. 34, 73-80. https://doi.org/10.1016/0024-3205(84)90332-1
  23. Ruttimann, A., Englert, G., Mayer, H., Moss, G. P. and Weedon, B. C. (1983) Synthesis of optically active natural carotenoids and structurally related compounds. X. Synthesis of (3R,3′S,5′R)-Capsanthin, (3S,5R,3′S,5′R)-Capsorubin, (3′S,5′R)-Cryptocapsin, and some related compounds. A new approach to optically active, five-membered-ring carotenoid building units by hydroboraton. Helv. Chim. Acta 66, 1939-1960. https://doi.org/10.1002/hlca.19830660706
  24. Schuchardt, U., Sercheli, R. and Vargas, R. M. (1998) Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199-210.
  25. Schweiggert, U., Kurz, C., Schieber, A. and Carle, R. (2007) Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (capsicum annuum L.) and hot chilli peppers (Capsicum frutescens L.). Eur. Food Res. Technol. 225, 261-270. https://doi.org/10.1007/s00217-006-0413-y
  26. Shimabukuro, M., Zhou, Y. T., Levi, M. and Unger R. H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. U.S.A. 95, 2498-2502. https://doi.org/10.1073/pnas.95.5.2498
  27. Sompong, D. and Trakanrungroj, P. (2010) The flower of Radermacheraignea (kurz) steenis, a new source of zeaxanthin. Suranaree J. Sci. Technol. 17, 303-308.
  28. Whitehead, J. P., Richards, A. A., Hickman, I. J., Macdonald, G. A. and Prins, J. B. (2006) Adiponectin-a key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 8, 264-280. https://doi.org/10.1111/j.1463-1326.2005.00510.x
  29. Wu, X., Motoshima, H., Mahadev, K., Stalker, T. J., Scalia, R. and Goldstein, B. J. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355-1363. https://doi.org/10.2337/diabetes.52.6.1355
  30. Yamamoto, Y., Hirose, H., Saito, I., Tomita, M., Taniyama, M., Matsubara, K., Okazaki, Y., Ishii, T., Nishikai, K. and Saruta, T. (2002) Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin. Sci. 103, 137-142.
  31. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295. https://doi.org/10.1038/nm788
  32. Yamauchi, T., Kamon, J., Waki, H., Imai, Y., Shimozawa, N., Hioki, K., Uchida, S., Ito, Y., Takakuwa, K., Matsui, J., Takata, M., Eto, K., Terauchi, Y., Komeda, K., Tsunoda, M., Murakami, K., Ohnishi, Y., Naitoh, T., Yamamura, K., Ueyama, Y., Froguel, P., Kimura, S., Nagai, R. and Kadowaki, T. (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461-2468. https://doi.org/10.1074/jbc.M209033200
  33. Ye, J., Gao, Z., Yin, J. and He, Q. (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118-E1128. https://doi.org/10.1152/ajpendo.00435.2007
  34. Yoshida, T., Umekawa, T., Kumamoto, K., Sakane, N., Kogure, A., Kondo, M., Wakabayashi, Y., Kawada, T., Nagase, I. and Saito, M. (1998) ${\beta}_3$-Adrenergic agonist induces a functionally active uncoupling protein in fat and slow-twitch muscle fibers. Am. J. Physiol. 274, E469-E475.
  35. Yoshioka, M., Doucet, E., Drapeau, V., Dionne, I. and Tremblay, A. (2001) Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br. J. Nutr. 85, 203-211. https://doi.org/10.1079/BJN2000224
  36. Zebisch, K., Voigt, V., Wabitsch, M. and Brandsch, M. (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 425, 88-90. https://doi.org/10.1016/j.ab.2012.03.005

Cited by

  1. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes vol.8, pp.10, 2017, https://doi.org/10.3390/antiox8100469
  2. Development of Nanoemulsion Preconcentrate of Capsanthin with Improved Chemical Stability vol.18, pp.1, 2017, https://doi.org/10.1089/adt.2019.916
  3. Assessment of carotenoid concentrations in red peppers ( Capsicum annuum ) under domestic refrigeration for three weeks as determined by HPLC-DAD vol.6, pp.None, 2017, https://doi.org/10.1016/j.fochx.2020.100092
  4. Protective Role of Dietary Capsanthin in a Mouse Model of Nonalcoholic Fatty Liver Disease vol.24, pp.6, 2017, https://doi.org/10.1089/jmf.2020.4866
  5. Capsanthin, a Plant-Derived Xanthophyll: a Review of Pharmacology and Delivery Strategies vol.22, pp.5, 2017, https://doi.org/10.1208/s12249-021-02065-z